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The goal of this paper is to examine the timing of environmental compliance inspections and 
determine the extent to which such inspections can be predicted. The paper focuses on modeling 
the inspections at hazardous waste facilities in the U.S. using detailed data on individual 
inspections and facilities. The paper uses a number of parametric and semi-parametric duration 
models to predict the timing of inspections and finds that the Exponential model provides the 
best balance in terms of the explanatory power and simplicity of the model. However, even with 
this model it is difficult to accurately predict the timing of most compliance inspections. The 
paper also examines the extent to which using data on individual inspections can improve 
empirical predictions about aggregate inspections. If the goal is to estimate the annual number of 
inspections at hazardous waste facilities, neither the Exponential model or a Poisson model is 
clearly superior. Which model is more appropriate depends on the question the researcher wants 
to answer. Similarly, if the focus is on whether any inspection occurred in a given time period, 
the benefits of using the Exponential model depend on the nature of the questions to be 
answered. While the Exponential model performs better than a Probit model in predicting which 
entities will be inspected, it also results in a higher number of “false positives,” that is predicting 
an inspection when no inspection actually occurs.  
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How	Predictable	are	Environmental	Compliance	Inspections?	
	

1. Introduction	

In	the	U.S.	many	major	environmental	regulations	are	enforced	using	a	deterrence‐

framework:	that	is,	regulations	are	enforced	through	unannounced	compliance	inspections	

and	fines	for	any	violations	discovered	during	the	course	of	those	inspections.	According	to	

Gray	and	Shimshack	(2011),	most	policy‐makers	and	scholars	generally	believe	that	

effective	pollution	regulations	require	an	enforcement	regime	that	includes	recurrent	

inspections	and	sanctions,	and	survey	evidence	suggests	that	a	traditional	regulatory	

structure	with	rigorous	monitoring	and	enforcement	is	a	primary	motivator	of	facilities’	

environmental	compliance	decisions.	

Numerous	empirical	studies	covering	a	wide	range	of	environmental	regulations	

and	regulated	populations	provide	evidence	that	deterrence‐based	enforcement	does	

increase	compliance	rates.	For	example,	Gray	and	Deily	(1996)	and	Gray	and	Shadbegian	

(2005)	examine	air	pollution	compliance	for	steel	mills	and	pulp	and	paper	mills	in	the	U.S.,	

respectively,	and	find	that	both	inspections	and	enforcement	actions	have	a	statistically	

significant	positive	impact	on	compliance.	Looking	at	compliance	with	U.S.	water	

regulations,	Earnhart	(2004)	and	Glicksman	and	Earnhart	(2007)	similarly	find	that	

inspections	and	sanctions	deter	violations	at	water	treatment	plants	and	chemical	facilities,	

respectively.	Stafford	(2002)	shows	that	compliance	inspections	and	penalties	for	

violations	have	a	significant	deterrent	effect	on	violations	at	facilities	subject	to	hazardous	

waste	regulations.1	

Most	theoretical	models	of	deterrence‐based	enforcement	assume	that	compliance	

inspections	are	probabilistic	–	that	is,	a	regulated	entity	knows	the	likelihood	that	

compliance	inspection	may	occur,	but	not	whether	one	is	or	is	not	going	to	occur	with	

certainty	during	any	particular	period.	If	compliance	inspections	are	completely	

predictable,	regulated	entities	would	only	comply	when	an	inspection	was	going	to	occur.	

By	making	inspections	probabilistic,	regulators	can	deter	more	violations	using	fewer	

resources	because	as	long	as	the	expected	cost	of	violation	–	that	is,	the	probability	of	an	

																																																								
1	See	Gray	and	Shimshack	(2011)	for	a	comprehensive	survey	of	the	empirical	literature	on	
environmental	monitoring	and	enforcement.		
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inspection	times	the	sanction	for	a	violation	–	exceeds	the	cost	of	compliance,	facilities	will	

comply.		

	 In	practice,	however,	it	is	not	clear	whether	compliance	inspections	really	are	

unpredictable.	For	example,	it	is	reasonable	to	think	that	the	probability	that	a	facility	is	

inspected	may	depend	on	how	long	it	has	been	since	the	last	inspection,	particularly	if	a	

regulatory	agency’s	charge	is	to	inspect	each	facility	at	least	once	every	two	years.2	If	the	

timing	of	a	compliance	inspection	depends	on	the	length	of	time	since	the	last	inspection,	

facilities	may	be	able	to	roughly	predict	when	a	compliance	inspection	will	occur	and	adjust	

their	compliance	decisions	accordingly,	decreasing	the	deterrent	effect	of	the	inspection.	

The	primary	objective	of	this	paper	is	to	examine	the	timing	of	environmental	compliance	

inspections	and	determine	the	extent	to	which	such	inspections	can	be	predicted.	More	

specifically,	this	paper	focuses	on	modeling	the	timing	of	compliance	inspections	conducted	

at	hazardous	waste	generators	using	data	on	individual	inspections	over	an	eleven‐year	

time	period.	If	compliance	inspections	have	become	predictable,	policymakers	looking	to	

increase	environmental	compliance	may	find	it	effective	to	redesign	their	monitoring	

strategy.	

A	secondary	objective	of	this	paper	is	to	determine	the	extent	to	which	using	

detailed	information	on	individual	inspections	can	improve	empirical	predictions	of	the	

timing	of	inspections.	Many	empirical	analyses	of	enforcement	and	compliance	need	to	

estimate	the	likelihood	of	an	inspection	or	the	number	of	inspections	for	a	given	time	

period.	For	the	most	part,	such	studies	estimate	inspections	for	a	particular	time	period	

based	on	aggregated	data	(e.g.,	monthly	or	annual	inspections).	However,	it	may	be	the	case	

that	using	detailed	information	on	individual	inspections	can	improve	empirical	

predictions	of	the	likelihood	and	number	of	inspections.	

The	remainder	of	the	paper	is	organized	as	follows:	Section	2	provides	a	theoretical	

framework	for	the	empirical	analysis	and	discusses	the	related	literature.	Section	3	

discusses	the	institutional	setting	for	the	analysis,	namely	the	inspection	regime	for	EPA’s	
																																																								
2	For	example,	Section	3007	of	the	Resource	Conservation	and	Recovery	Act	requires	that	
EPA	or	an	authorized	state	conduct	a	program	to	“thoroughly	inspect”	every	hazardous	
waste	treatment,	storage,	or	disposal	facility	“no	less	often	than	every	two	years”	(42	U.S.C.	
§	6927).	
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hazardous	waste	program.	Section	4	presents	the	econometric	methodology	while	Section	

5	describes	the	data	used	in	the	analysis.	Section	6	presents	the	results	of	the	duration	

models	and	Section	7	compares	the	duration	results	to	other	more	common	models	of	

inspections.	Finally,	Section	8	concludes.	

	

2. Theoretical	Framework	and	Related	Literature	

The	deterrence	approach	to	environmental	regulation	is	based	on	Becker's	(1968)	

seminal	paper	on	the	economics	of	crime,	which	assumes	that	individuals	are	rational,	and	

will	commit	a	crime	whenever	the	expected	benefit	of	the	crime	to	the	individual	is	greater	

than	the	expected	cost	of	the	crime	to	the	individual.	To	deter	crimes,	the	government	can	

increase	the	expected	cost	of	crime	either	by	increasing	the	likelihood	that	a	crime	is	

detected	or	the	punishment	associated	with	a	crime.	Becker’s	initial	model	has	spawned	a	

large	literature	on	the	economics	of	crime	as	well	as	a	literature	on	regulatory	enforcement	

that	starts	with	the	same	basic	assumption	that	violators	make	decisions	based	on	a	

rational	comparison	of	costs.3		

Russell,	Harrington,	and	Vaughn	(1986)	were	one	of	the	first	to	take	the	general	

models	on	the	economics	of	crime	and	explicitly	apply	them	to	environmental	regulation.	

In	the	context	of	environmental	regulations,	if	policy	makers	want	to	deter	environmental	

violations	they	can	either	increase	the	likelihood	that	a	violation	is	detected	or	increase	the	

sanctions	associated	with	detected	violations.	Over	the	last	several	decades	many	

additional	models	of	environmental	compliance	and	enforcement	have	been	built	on	this	

“rational	polluter”	framework,	extending	the	basic	model	by	allowing	for	complexities	such	

as	imperfect	information,	self‐reporting,	and	principal‐agent	relationships,	to	name	a	few.	

While	the	majority	of	these	extensions	assume	a	static	setting,	there	are	several	papers	that	

have	presented	dynamic	models	on	enforcement	and	compliance.4	One	of	the	most	

influential	of	these	models	is	Harrington’s	(1988)	targeted	enforcement	model	which	uses	

changes	in	future	inspection	activity	to	motivate	current	compliance	and	shows	that	such	a	

regime	can	maintain	a	higher	level	of	compliance	than	can	be	obtained	through	more	

traditional,	non‐targeted	enforcement.	Harrington’s	model	has	been	extended	theoretically	
																																																								
3	See	Polinsky	and	Shavell	(2000)	for	an	overview	of	this	literature.	
4	See	Cohen	(1999)	and	Heyes	(2000)	for	surveys	of	this	literature.	
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by	a	number	of	papers	(see,	for	example,	Harford	and	Harrington	(1991),	Raymond	(1999),	

Friesen	(2003))	and	has	also	been	the	focus	of	a	number	of	empirical	studies	(see	for	

example,	Helland	(1998),	Nyborg	and	Telle	(2006),	and	Stafford	(2007)).		

While	both	the	theoretical	targeting	models	and	the	empirical	tests	of	such	models	

have	explicitly	examined	the	relationship	between	past	and	future	compliance	and	

enforcement,	the	models	and	estimates	have	used	a	series	of	discrete	time	periods	such	as	

months	or	years	rather	than	looking	at	inspections	continuously	across	time.	For	example,	

most	empirical	studies	of	enforcement	estimate	the	likelihood	of	an	inspection	for	a	given	

time	period	(or	in	some	cases	the	number	of	inspections	for	a	given	time	period)	choosing	

the	time	period	for	the	analysis	based	on	the	type	of	data	available.	There	is	only	one	study	

other	than	this	one	that	focuses	explicitly	on	inspection	timing,	Rousseau	(2007).	In	that	

paper,	Rousseau	examines	the	regulatory	inspection	history	of	textile	plants	in	Flanders	

using	a	duration	model.5	More	specifically,	she	uses	a	Cox	partial	likelihood	model	to	

estimate	the	length	of	time	between	environmental	inspections	for	textile	plants	based	on	

the	plants’	characteristics	and	past	compliance	statuses.	She	finds	that	the	Flemish	

environmental	inspection	agency	does	use	targeting,	particularly	targeting	based	on	past	

compliance	behavior	and	the	plants’	overall	capacity,	to	select	the	plants	that	it	inspects.	

However,	since	the	focus	of	her	paper	is	to	examine	the	extent	of	targeting,	Rousseau	does	

not	analyze	whether	a	duration	model	provides	a	better	fit	to	the	data	than	a	standard	

model.		

This	paper	differs	from	that	of	Rousseau	in	two	primary	ways.	First,	and	most	

obvious,	this	paper	looks	at	U.S.	hazardous	waste	inspections	across	a	wide	range	of	

industries	as	opposed	to	Flemish	environmental	inspections	at	textile	plants	across	a	

variety	of	media	(e.g.,	water	pollution,	air	pollution,	toxic	substances).	Second,	this	paper	

uses	multiple	different	duration	analyses	in	order	to	assess	how	well	different	duration	

models	predict	inspections.	Moreover,	it	compares	the	predictions	of	the	duration	models	

to	the	predictions	of	more	commonly	used	empirical	models	to	determine	whether	using	

additional	data	on	individual	inspections	provides	a	more	accurate	estimate	of	inspection	

probability	than	what	can	be	achieved	using	aggregate	data.	
																																																								
5	Nadeau	(1997)	estimates	a	duration	model	of	plant	non‐compliance	in	the	U.S.,	but	
chooses	to	model	inspections	as	a	Poisson	process.		
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3. Institutional	Setting		

Because	environmental	regulation	in	the	U.S.	is	the	result	of	a	series	of	different	

pieces	of	legislation,	there	are	separate	media	programs	that	regulate	air	pollution,	water	

pollution,	and	hazardous	waste.	Each	program	tracks	the	individual	facilities	that	it	

regulates	separately	and	has	its	own	enforcement	regime.	An	inspection	conducted	by	the	

air	program	focuses	on	determining	compliance	with	air	regulations,	not	water	or	

hazardous	waste	regulations.6	Thus,	in	examining	the	timing	of	environmental	inspections	

it	makes	sense	to	focus	on	one	particular	media	program.	This	paper	focuses	on	the	

hazardous	waste	program	because	regulatory	inspections	are	the	primary	method	for	

enforcing	hazardous	waste	regulations,	as	hazardous	waste	facilities	are	not	required	to	

self‐report	compliance	status.7	

Hazardous	waste	is	regulated	under	the	Resource	Conservation	and	Recovery	Act	

(RCRA).	RCRA	Subtitle	C,	Section	§3007	gives	EPA	the	authority	to	conduct	compliance	and	

evaluation	inspections	of	hazardous	waste	facilities	for	the	purpose	of	developing	

regulations,	preparing	permits,	or	ensuring	compliance	with	RCRA	regulations.	Regulated	

entities	must	grant	authorized	officials	access	to	all	records	at	hazardous	waste	

management	facilities	at	all	reasonable	times	and	must	allow	officials	to	obtain	samples	of	

any	wastes	present	and	determine	compliance	with	all	applicable	requirements	of	RCRA.8		

There	are	a	number	of	different	types	of	inspections.	Some	inspections	are	not	

focused	on	enforcement	but	instead	are	designed	to	collect	information	to	help	EPA	

develop	new	rulemakings	or	are	compliance	assistance	inspections	conducted	at	the	

request	of	the	regulated	entity.	While	these	types	of	inspections	will	be	scheduled	in	

																																																								
6	Programs	can	co‐operate	and	conduct	multi‐media	inspections,	but	the	majority	of	
inspections	are	single	program	inspections.	
7	Both	the	Clean	Air	Act	and	Clean	Water	Act	require	regulated	entities	to	self‐report	
compliance	status.	
8	Under	the	U.S.	Supreme	Court	decision	in	Marshall	v.	Barlow	(436	U.S.	307,	322‐24	
(1978)),	business	owners	and	operators	have	an	expectation	of	privacy	against	
unreasonable	administrative	searches	of	their	commercial	property	and	warrantless	
searches	cannot	generally	be	conducted.	However,	there	is	an	exception	for	“pervasively	
regulated	businesses”	subject	to	“longstanding	governmental	regulation.”	Additionally,	
probable	cause	for	obtaining	a	warrant	can	be	established	by	showing	that	the	entity	is	
being	inspected	according	to	a	neutral	inspection	regime.	In	practice,	few	entities	challenge	
EPA	inspections	without	warrants	(Steinway,	2009).	
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conjunction	with	the	facility,	EPA’s	policy	is	that	compliance	inspections	are	unannounced.	

The	primary	types	of	compliance	inspections	include:	

	

 Compliance	Evaluation	Inspections	—	Routine	inspections	to	evaluate	compliance	

with	RCRA.	These	inspections	usually	encompass	a	file	review	prior	to	the	site	visit;	

an	on‐site	examination	of	generation,	treatment,	storage,	or	disposal	areas;	a	review	

of	records;	and	an	evaluation	of	the	facility’s	compliance	with	RCRA.	

 Focused	Compliance	Inspections	—	Inspections	that	address	only	a	specific	portion	

of	the	RCRA	regulations.	

 Ground	Water	Monitoring	Evaluations	—	Inspections	to	ensure	that	ground	water	

monitoring	systems	are	designed	and	functioning	properly	at	RCRA	land	disposal	

facilities.	

 Compliance	Schedule	Evaluations	—	Inspections	that	verify	compliance	with	an	

compliance	schedule	following	a	formal	enforcement	action.		

 Operations	and	Maintenance	Inspections	—	Inspections	to	ensure	that	ground	

water	monitoring	and	other	systems	at	closed	land	disposal	facilities	continue	to	

function	properly.		

 Corrective	Action	Compliance	Evaluations	—	Evaluations	of	a	site's	compliance	with	

the	corrective	action	requirements	of	a	permit	or	an	order.	

 Follow‐Up	Inspections	—	Limited	inspections	conducted	to	verify	the	compliance	

status	in	areas	that	were	found	to	be	out	of	compliance	during	previous	inspections.		

	

While	federal	EPA	employees	from	headquarters	or	one	of	EPA’s	ten	regional	offices	may	

conduct	compliance	inspections,	most	inspections	are	conducted	by	state	and	local	

agencies.9	

																																																								
9	Under	Section	§3006	of	RCRA,	EPA	may	authorize	qualified	states	to	administer	and	
enforce	their	own	hazardous	waste	program.	States	with	final	authorization	administer	
their	hazardous	waste	programs	in	lieu	of	EPA’s	federal	program.	However,	even	in	states	
with	final	authorization,	EPA	retains	the	authority	to	conduct	independent	inspections	and	
can	enforce	any	provision	of	an	authorized	state’s	approved	program,	including	state	
requirements	that	are	more	stringent	than	the	federal	requirements.	
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RCRA’s	Compliance	Monitoring	Strategy	requires	that	all	facilities	that	are	permitted	

to	treat,	store,	or	dispose	hazardous	wastes	(facilities	known	as	TSDFs)	be	inspected	at	

least	once	every	two	years	and	that	20	percent	of	large	quantity	generators	(LQGs)	be	

inspected	each	year.	Additionally,	the	Hazardous	and	Solid	Waste	Amendments	(HSWA)	to	

RCRA	require	that	all	federal‐	and	state‐operated	facilities	be	inspected	annually.	Other	

facilities	may	be	inspected	less	frequently.	When	a	violation	is	detected,	regulators	can	

choose	from	a	variety	of	enforcement	actions	including	administrative	orders,	civil	

lawsuits,	or	criminal	lawsuits	and	may	conduct	additional	case	development	inspections	to	

gather	data	to	support	a	particular	enforcement	action.		

According	to	EPA’s	RCRAInfo	database,	in	2010	federal	and	state	regulators	

conducted	32,240	inspections	at	24,995	regulated	hazardous	waste	facilities.10	While	it	is	

difficult	to	determine	exactly	the	number	of	facilities	regulated	under	RCRA	in	2010,	the	

total	number	exceeded	700,000.	Thus	less	than	1	in	20	regulated	facility	was	inspected	in	

2010.	Of	those	facilities	that	were	inspected,	the	average	number	of	inspections	was	1.3	per	

facility	although	almost	84	percent	(21,103	facilities)	were	inspected	only	once	that	year.	

Just	under	11	percent	(2,724	facilities)	were	inspected	on	two	separate	dates	while	the	

remaining	6,217	inspections	took	place	at	approximately	5	percent	(1,168)	of	inspected	

facilities.	Table	1	shows	the	breakdown	of	2010	inspections	by	primary	inspection	type	and	

the	type	of	inspector.11	Note	that	almost	60	percent	of	inspections	are	general	compliance	

evaluation	inspections	and	that	state	regulators	conduct	over	90	percent	of	inspections.	

Over	the	five	year	period	of	2006‐2010,	150,756	inspections	were	conducted,	or	

roughly	30,000	per	year.	These	inspections	occurred	at	80,798	unique	facilities,	less	than	

one	fifth	of	the	regulated	universe.	Of	the	inspected	facilities,	close	to	70	percent	(55,800	

facilities)	received	only	one	inspection	over	this	time	period,	while	about	six	percent	

(4,507)	received	five	or	more	inspections.	Thus	there	are	significant	differences	in	the	

length	of	time	between	inspections	across	regulated	facilities.		

	
																																																								
10	RCRAInfo	is	EPA’s	primary	database	for	all	facilities	regulated	under	RCRA.	It	contains	
data	on	all	inspections	and	enforcement	actions	conducted	under	RCRA’s	authority.	
11	Over	95	percent	of	inspections	list	only	one	type	of	inspection	and	one	inspection	agency.	
For	the	remaining	inspections,	a	primary	inspections	type	and/or	primary	inspector	type	
was	assigned	based	on	author‐created	hierarchies.	Details	are	available	upon	request.	
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4. Econometric	Methodology		

As	mentioned	in	the	introduction,	most	empirical	analyses	of	environmental	

enforcement	use	aggregated	data	(e.g.,	annual,	quarterly,	or	monthly)	to	estimate	the	

probability	that	a	facility	is	inspected	during	a	particular	time	period	or	the	number	of	

inspections	that	occur	during	a	that	time	period.	In	contrast,	this	analysis	uses	data	on	

individual	inspections	to	estimate	the	length	of	time	between	regulatory	inspections	and	

the	likelihood	that	a	facility	that	has	not	been	inspected	for	a	given	number	of	days	will	be	

inspected	the	following	day.	This	paper	uses	a	variety	of	survival	or	duration	models	to	

examine	how	various	explanatory	variables	affect	the	“survival”	time	of	subjects	in	the	

analysis	or	the	“duration”	as	a	particular	type	of	“spell”.12	To	conduct	a	survival	or	duration	

analysis	one	must	first	identify	the	universe	that	one	wants	to	examine	and	then	observe	

the	times	at	which	facilities	enter	and	exit	a	particular	spell.	With	this	information,	one	can	

conduct	a	variety	of	different	analyses	to	analyze	the	duration	of	spells	and	the	ways	in	

which	various	factors	influence	the	duration.	Alternatively	one	can	examine	the	probability	

of	exiting	a	spell	conditional	on	having	survived	for	a	particular	length	of	time.	This	

probability	is	known	as	the	hazard	rate	or	hazard	function.	

	 Survival	models	all	share	the	same	basic	setup.	Let	T	be	a	non‐negative	random	

variable	representing	the	duration	of	a	spell	for	a	particular	subject.	Then	T	has	an	

associated	density	function	f(t)	and	a	cumulative	distribution	function	F(t)	where	t	is	a	

realization	of	T.	The	probability	that	the	spell	length	is	t	or	longer	is	given	by	the	survivor	

function:	

	

	 S(t)	=	1‐F(t)	=	Pr(T>t).	 (1)	

	

The	probability	that	one	who	has	survived	up	to	t	exits	a	spell	at	t	(the	hazard	function)	is:	

	

	
 t  f t 

S t 
.	 (2)	

	
																																																								
12	See	Wooldridge	(2010),	Chapter	22	“Duration	Models”	for	a	more	comprehensive	
discussion	of	the	use	of	survival	models.	
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If	(t)	is	increasing	in	t,	the	spell	exhibits	positive	duration	dependence.	That	is,	the	longer	

the	spell,	the	higher	the	probability	that	one	will	exit	from	the	spell.	One	would	likely	see	

positive	duration	dependence	if	facilities	had	to	be	inspected	with	a	particular	frequency,	

e.g.	once	every	two	years.	The	longer	the	time	since	the	last	inspection,	the	higher	the	

probability	of	inspection	will	be.	Alternatively,	one	might	see	negative	duration	

dependence	if	the	agency	engaged	in	inspection	targeting	where	some	facilities	were	

inspected	with	a	high	frequency	and	some	inspected	with	a	low	frequency.	Finally,	spells	

may	not	exhibit	duration	dependence	if	the	probability	of	inspection	is	constant	across	

time.	

	 The	length	of	a	particular	spell,	t,	can	be	written	as	a	function	of	a	vector	of	

explanatory	variables	x	and	an	error	term	:	

	

	 tj	=	0	+	xj	x	+	j	.	 (3)	

	

Then	the	hazard	function	can	be	written	as:	

	

	
 j t   g t,0  x jx ,	 (4)	

	

where	the	function	g()	depends	on	the	distributional	assumptions	one	makes	about	j.	

Similarly,	the	survivor	function	can	be	expressed	as	

	

	
S j t   h t,0  x jx 

	
.	 (5)	

	

	 There	are	two	general	approaches	for	incorporating	explanatory	variables	into	the	

analysis,	semi‐parametric	and	parametric.13	The	most	common	semi‐parametric	model	is	

																																																								
13	One	can	also	use	a	non‐parametric	estimator	of	the	survivor	function,	the	Kaplan‐Meier	
estimator,	which	does	not	allow	for	explanatory	variables	but	instead	only	uses	observed	
spell	durations.	This	study	does	not	to	use	such	an	approach	because	a	preliminary	analysis	
showed	that	the	differences	between	the	Kaplan‐Meier	estimates	for	various	subsets	of	the	
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the	Cox	proportional	hazard	model,	which	assumes	that	the	hazard	rate	for	an	individual	

subject	j	can	be	expressed	as:	

	

	
 t | x j  0 t ex j x

,	 (6)	

where	0(t)	is	a	baseline	hazard	function	common	to	all	subjects.	The	model	is	then	

estimated	using	a	partial	likelihood	estimator	that	does	not	require	that	the	baseline	

hazard	be	estimated.14	The	explanatory	variables	in	this	model	shift	the	hazard	function	

multiplicatively	and	the	ratio	of	any	two	subjects’	hazard	rates	at	a	given	point	in	time	is	

constant	as	long	as	the	covariates	do	not	change	over	time.	One	advantage	of	this	model	is	

that	it	allows	one	to	incorporate	explanatory	variables	into	the	model	but	does	not	require	

one	to	make	assumptions	about	the	baseline	hazard	model	that,	if	wrong,	could	result	in	

misleading	results.	The	disadvantage	is	that	there	is	a	loss	in	efficiency	and	if	one	knew	the	

functional	form	for	the	baseline	hazard	one	could	obtain	better	estimates	of	the	

coefficients.	Additionally	while	one	does	not	have	to	make	assumptions	about	the	baseline	

hazard,	one	must	assume	that	all	subjects	have	the	same	baseline	hazard,	which	could	also	

result	in	misleading	conclusions	if	the	assumption	is	not	correct.	To	control	for	multiple	

spells	at	individual	facilities,	the	errors	can	be	clustered	by	facility.	

	 By	making	an	initial	assumption	about	the	distribution	of	the	hazard	function,	

parametric	models	can	use	the	data	on	spells	more	efficiently	than	the	Cox	model,	

assuming	the	distribution	is	specified	correctly.	There	are	a	number	of	commonly	used	

parametric	models.	The	Exponential	model	is	the	simplest	one	as	it	assumes	that	the	

baseline	hazard	rate	is	constant,	which	implies	that	the	underlying	cumulative	distribution	

function	of	the	length	of	spells	has	an	exponential	distribution.	The	Weibull	model	assumes	

that	the	length	of	spells	has	a	Weibull	distribution,	which	results	in	a	baseline	hazard	

function	that	can	be	written	as:	

	

	 0 t     t1

,	 (7)	

																																																																																																																																																																																			
data	were	statistically	significant.	Thus	the	explanatory	variables	used	in	the	model	are	
important	in	predicting	the	duration	of	spells.	
14	Cox	(1972)	presents	the	partial	likelihood	estimator	
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where		and		are	non‐negative	parameters	of	the	model	that	that	will	also	be	estimated.	

When		equals	1	the	Weibull	model	reduces	to	the	exponential	model	with	a	constant	

hazard	rate	equal	to	.	If		is	greater	(less)	than	one,	the	hazard	rate	exhibits	positive	

(negative)	duration	dependence.	Note	that	in	this	model,	the	hazard	rate	is	either	

monotonically	increasing,	monotonically	decreasing	or	constant.	The	Gompertz	model	also	

allows	for	a	monotonically	increasing	or	decreasing	hazard	rate,	but	unlike	the	Weibull	

model,	the	baseline	hazard	changes	exponentially	with	time:	

	

	

�

0 t    e t

.	 (8)	

	

Note	that	this	model	reduces	to	the	exponential	model	if		equals	0.	The	Log‐Logistic	model	

allows	for	a	baseline	hazard	rate	that	can	both	increase	and	decrease.	In	this	model,	the	

baseline	hazard	rate	is	expressed	as:	

	

	

�

0 t     t1

1  t
.	 (9)	

	

When		is	less	than	one,	the	hazard	rate	increases	up	to	a	certain	point	in	time	and	then	

decreases.	When		is	greater	than	or	equal	to	one	the	hazard	rate	is	monotonically	

decreasing.	In	all	of	these	models,	the	explanatory	variables	serve	to	shift	the	hazard	

function.	As	with	the	Cox	model,	to	control	for	multiple	spells	at	individual	facilities,	errors	

are	clustered	by	facility.	

The	Akaike	Information	Criterion	(AIC)	provides	a	method	for	determining	which	of	

these	models	provides	the	best	fit.	The	AIC	compares	log‐likelihoods	of	the	models,	

adjusting	for	the	number	of	parameters	being	fitted.	For	the	parametric	survival	models,	

the	AIC	is	defined	as:	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 ,	 (10)	
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where	k	is	the	number	of	explanatory	variables	and	c	is	the	number	of	model‐specific	

distributional	parameters.	Thus	the	AIC	captures	the	trade‐off	between	the	complexity	of	

the	model	and	the	goodness	of	fit	of	the	model	with	a	lower	AIC	indicating	a	better	fit.	

	

5. Description	of	the	Data	

Data	Sources	

Data	on	facilities	subject	to	RCRA	regulation	comes	from	two	primary	sources,	both	

of	which	are	publicly	available	on	EPA’s	website:	the	RCRAInfo	database	and	the	Biennial	

Reporting	System	(BRS).	RCRAInfo	contains	information	on	all	facilities	that	are	or	have	

been	regulated	under	RCRA	Subtitle	C,	i.e.,	facilities	subject	to	RCRA	hazardous	waste	

regulations.	The	dataset	contains	information	on	facility	characteristics,	including	facility	

status	and	regulated	activities,	and	is	updated	periodically.	The	dataset	also	includes	

information	on	all	inspections	and	enforcement	actions	at	RCRA	regulated	facilities.	The	

BRS	contains	data	collected	biennially	(for	odd	years)	on	the	generation	and	management	

of	hazardous	waste	by	facilities.	

	

Universe	for	Analysis	

This	analysis	considers	all	inspections	that	occurred	between	January	1,	2000	and	

December	31,	2010.	During	this	eleven‐year	time	period,	314,776	RCRA	inspections	were	

conducted	at	90,252	unique	facilities.	This	represents	about	12	percent	of	the	over	760,000	

facilities	in	the	RCRAInfo	database.	While	the	low	percentage	of	facilities	that	are	inspected	

is	partly	due	to	the	fact	that	a	number	of	facilities	in	the	database	are	inactive,	it	is	also	the	

case	that	many	facilities	regulated	under	RCRA	are	rarely	inspected.	In	particular,	of	the	

over	300,000	facilities	identified	as	conditionally	exempt	hazardous	waste	generators,	only	

about	a	quarter	were	inspected	during	the	2000	to	2010	period.15		

Since	the	goal	of	this	paper	is	to	better	understand	the	timing	of	inspections,	the	

study	focuses	on	those	facilities	that	are	likely	to	be	inspected	with	some	frequency:	large	

																																																								
15	Conditionally	exempt	generators	generate	less	than	100	kg	(220	lb)	of	hazardous	waste,	
or	less	than	1	kg	(2.2	lb)	of	acutely	hazardous	waste,	per	calendar	month.	These	facilities	
are	subject	to	many	fewer	regulations	than	facilities	that	generate	larger	quantities	of	
hazardous	waste.	
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quantity	generators	(LQGs)	and	facilities	that	store,	treat,	or	dispose	hazardous	waste	

(TSDFs).16	To	ensure	that	the	facilities	in	the	analysis	are	actively	regulated	for	the	entire	

period	of	the	analysis,	the	analysis	is	limited	to	facilities	that	consistently	reported	to	the	

BRS	throughout	this	time	period.	According	to	the	BRS,	57,545	unique	LQGs	and	TSDFs	

filed	biennial	reports	between	1999	and	2009.17	Of	those	facilities,	6,711	filed	reports	for	

all	of	the	odd	years	from	1999	to	2009.	Although	the	requirement	that	facilities	

consistently	file	BRS	reports	significantly	decreases	the	universe	for	this	analysis,	including	

facilities	that	are	not	regulated	for	the	entire	period	would	systematically	bias	the	results	of	

the	analysis.	Of	the	6,711	consistently	regulated	LQGs	and	TSDFs,	281	are	not	inspected	

during	the	2000‐2010	period.	The	6,430	facilities	that	are	inspected	account	for	59,480	

inspections	from	2000	to	2010,	almost	20	percent	of	all	RCRA	inspections	conducted	

during	that	period	even	though	they	make	up	only	about	one	percent	of	the	regulated	

universe.	

	 Approximately	95	percent	of	the	inspections	in	RCRAInfo	identify	one	type	of	

inspection	and	one	inspecting	agency.	For	the	remaining	inspections,	a	primary	inspection	

type	and/or	primary	inspector	type	was	assigned	based	on	author‐created	hierarchies.18	

The	primary	inspection	types	were	then	used	to	identify	compliance	inspections	for	the	

purposes	of	this	analysis.	In	particular,	inspections	whose	primary	type	is	a	facility	self‐

disclosure,	compliance	assistance	visit,	case	development	inspection,	or	financial	or	non‐

financial	record	review	were	excluded	from	the	analysis.19	When	these	inspections	are	

excluded,	there	are	43,559	compliance	inspections	in	the	initial	dataset.		

As	discussed	in	Section	4,	the	unit	of	observation	for	a	duration	analysis	is	the	spell	

between	inspections,	not	the	inspection	itself.	The	snapspan	and	stset	commands	in	Stata	

																																																								
16	A	large	quantity	generator	is	any	facility	that	generates	more	than	1,000	kg	(2,200	lb)	of	
hazardous	waste	per	calendar	month,	or	more	than	1	kg	(2.2	lb)	of	acutely	hazardous	waste	
per	calendar	month.	
17	Since	biennial	reports	are	filed	only	for	the	odd	years,	information	from	the	1999	
reporting	cycle	is	used	to	infer	that	a	facility	was	active	in	2000	and	from	the	2009	cycle	to	
infer	that	a	facility	was	active	in	2010.	
18	Details	on	the	hierarchies	provided	upon	request.	
19	Most	of	these	excluded	inspections	represent	a	small	percentage	of	total	inspections.	
Financial	and	non‐financial	record	reviews	represent	about	20	percent	of	all	inspections,	
but	are	excluded	because	they	are	not	field	inspections.		
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were	used	to	convert	the	inspection	data	to	spell	observations	that	can	be	used	to	conduct	

the	duration	analysis.	The	analysis	includes	spells	that	are	both	left‐	and	right‐censored,	

that	is	spells	that	begin	before	the	period	of	the	analysis	but	end	during	the	analysis	and	

spells	that	begin	during	the	period	of	the	analysis	but	end	after	the	period	of	the	analysis.	

Dropping	censored	observations	might	lead	to	underestimates	of	spell	length	if	censored	

spells	are	likely	to	be	of	longer	duration	than	uncensored	spells.	Including	censored	spells	

increases	the	total	number	of	observations	in	the	dataset	to	45,219.	However,	because	the	

study	includes	state‐level	data,	489	observations	from	48	RCRA	facilities	located	in	the	

District	of	Columbia,	Puerto	Rico,	Guam,	and	the	U.S.	Virgin	Islands	are	dropped,	leaving	a	

total	of	44,730	observations.20	

	

Explanatory	Variables	

	 Table	2	presents	the	explanatory	variables	used	in	the	analysis	along	with	a	brief	

description	of	each	variable,	its	mean,	and	its	standard	deviation.	These	data	come	

primarily	from	RCRAInfo	and	the	BRS.	There	are	three	types	of	explanatory	variables:	

spell‐specific	data;	facility	characteristics;	and	state	characteristics.	The	first	set	of	spell	

specific‐variables	identifies	the	type	of	inspection	that	begins	the	spell.	Because	compliance	

evaluation	inspections	are	the	most	common	type	of	inspection,	this	category	is	excluded	

from	the	regression	and	the	spell	duration	of	all	other	types	of	inspections	is	compared	

against	the	baseline	duration	of	compliance	evaluation	inspections.	There	are	no	ex	ante	

expectations	about	the	signs	of	the	coefficients	on	these	variables.	The	next	set	of	dummy	

variables	identifies	the	lead	agency	in	the	inspection	with	the	State	Lead	variable	excluded	

from	the	regressions.	The	last	two	spell‐specific	variables	are	Citizen	Complaint,	which	

indicates	whether	the	inspection	was	the	result	of	a	citizen	compliant	and	Multimedia	

																																																								
20	Rousseau	(2007)	runs	separate	regressions	for	three	different	types	of	inspections:	
routine,	reactive,	and	project‐related.	This	study	separates	compliance	inspections	from	
non‐compliance	inspections,	but	does	not	further	separate	compliance	inspections	for	two	
reasons.	First,	the	RCRAInfo	dataset	does	not	provide	enough	information	to	separate	
routine,	reactive,	and	project‐related	inspections.	Second,	while	there	are	different	types	of	
compliance	inspections	included	in	the	analysis,	the	decision	of	when	to	inspect	and	what	
type	of	inspection	to	conduct	are	likely	co‐determined.	This	analysis	focuses	on	estimating	
the	timing	of	the	regulator’s	decision	rather	than	the	type	of	inspection	that	the	regulator	
chooses	to	conduct.	
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Inspection,	which	indicates	that	the	inspection	included	multiple	regulatory	programs.	For	

these	variables	there	also	are	no	initial	expectations	as	to	the	sign	of	the	coefficients.		

	 Next	consider	the	facility	characteristics.	A	number	of	these	explanatory	variables	

are	fixed	and	thus	are	the	same	across	all	spell	observations	at	a	given	facility	as	well	as	

across	the	entire	period	of	the	analysis.	For	example	TSDF	and	Commercial	TSDF	indicate	

whether	the	facility	treats,	stores,	or	disposes	hazardous	waste	and	whether	such	services	

are	sold	commercially	by	the	facility,	respectively.	Given	that	RCRA	policies	require	TSDFs	

to	be	inspected	at	least	once	every	two	years,	one	would	expect	positive	coefficients	on	

these	variables	as	a	positive	coefficient	indicates	a	higher	hazard	ratio.21	The	variable	Used	

Oil	indicates	whether	the	facility	manages	used	oil	in	any	way.	Used	oil	is	regulated	

separately	from	other	hazardous	wastes	and	suggests,	ceteris	paribus,	a	more	complex	

facility.	Similarly	Multimedia	Facility	indicates	whether	the	facility	is	regulated	under	any	

other	federal	EPA	programs.	Thus	one	might	expect	positive	coefficients	for	both	of	these	

variables	as	well.	

	 The	next	three	variables	are	all	based	on	the	primary	industrial	classification	listed	

for	each	facility	in	RCRAInfo.	Waste	Management	is	equal	to	1	if	the	facility’s	primary	NAICS	

is	562;	Public	Administration	is	equal	to	1	if	the	facility’s	primary	NAICS	is	92;	and	

Manufacturing	is	equal	to	1	if	the	facility’s	primary	NAICS	is	31	through	33.	Because	federal	

and	state	operated	facilities	are	supposed	to	be	inspected	at	least	once	a	year	according	to	

RCRA	guidance,	one	would	expect	a	positive	coefficient	on	Public	Administration	but	there	

are	no	prior	expectations	as	to	the	signs	on	the	other	two	variables.		

	 The	remaining	facility	characteristics	do	depend	on	the	date	on	which	the	spell	

starts	but	they	do	not	vary	across	the	spell	itself.	Tons	Generated,	Tons	Managed,	and	Tons	

Received	from	Off‐Site	measure	the	tons	generated,	managed,	and	received	from	off‐site,	

respectively,	in	the	year	prior	to	the	spell’s	start	date.	Since	BRS	data	is	only	reported	in	

odd	years,	the	quantities	are	interpolated	for	even	years.	Thus	for	a	spell	that	begins	in	

2002,	the	variables	are	taken	from	the	2001	BRS	while	for	a	spell	that	begins	in	2003,	the	

variables	are	based	on	the	mean	of	the	quantities	in	2001	and	2003.	Because	the	quantities	

																																																								
21	Positive	coefficients	correspond	with	hazard	ratios	that	are	greater	than	1	(i.e.,	and	
increase	in	the	hazard)	and	negative	coefficients	correspond	with	hazard	ratios	that	are	
less	than	one.	
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of	waste	generated,	managed,	and	received	have	a	skewed	distribution,	the	model	includes	

the	log	of	tons	rather	than	tons.	All	of	these	three	variables	are	expected	to	have	positive	

coefficients.		

	 Prior	Year	Inspections,	Prior	5	Year	Inspections,	Prior	Year	Violations,	and	Prior	5	

Year	Violations	measure	the	number	of	inspections	and	violations	in	the	12	months	and	60	

months	immediately	prior	to	the	beginning	of	the	spell.	Note	that	for	these	counts,	only	

compliance	inspections	are	included.	However,	all	violations	discovered	during	the	12‐

month	and	60‐month	time	periods	are	included,	regardless	of	whether	those	violations	

were	discovered	during	a	compliance	inspection.	The	two	violation	variables	are	expected	

to	have	positive	coefficients	as	less	compliant	facilities	are	more	likely	to	be	inspected	in	

the	future.	Facilities	that	have	been	heavily	inspected	over	a	five‐year	period	are	also	

expected	to	continue	to	be	inspected	more	often.	However,	controlling	for	the	long‐term	

level	of	inspection	targeting,	one	might	expect	inspections	in	the	prior	year	to	increase	the	

duration	of	the	spell,	particularly	if	annual	inspections	are	relatively	unlikely.	

There	are	two	state	characteristics	that	also	depend	on	the	date	on	which	the	spell	

starts:	State	Inspections	and	State	Violations	measure	the	number	of	inspections	and	

violations	in	the	state,	respectively,	for	the	calendar	year	prior	to	the	start	of	the	spell.	Both	

of	these	variables	are	normalized	by	the	total	number	of	RCRA	facilities	in	the	state.	State	

Inspections	measures	the	level	of	inspection	conducted	in	a	state	relative	to	the	number	of	

RCRA‐regulated	entities.	If	incremental	inspection	resources	are	used	to	increase	

inspections	across	all	types	of	facilities,	the	coefficient	on	State	Inspections	should	be	

positive,	reflecting	shorter	spell	durations	in	those	states.	State	Violations	is	a	proxy	for	the	

demand	in	a	state	for	enforcement	resources,	as	regulators	will	have	to	expend	resources	

to	follow	up	on	detected	violations.	The	coefficient	on	State	Violations	is	expected	to	be	

negative	as	more	violations	will	likely	shift	resources	away	from	compliance	inspections	to	

following	up	on	the	violations.	In	addition	to	these	two	state	variables,	the	regressions	

includes	a	set	of	state	dummies	to	control	for	other	fixed	differences	in	inspection	timing	

across	the	states.22	

	

																																																								
22	Ohio	is	the	omitted	state.	
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6. Results	of	the	Duration	Models	

Cox	Proportional	Hazard	Results	

The	results	of	the	Cox	proportional	hazard	model	are	presented	in	Table	3.	To	

control	for	multiple	spells	at	the	same	facility,	robust	standard	errors	clustered	by	facility	

were	estimated.	As	discussed	in	Section	4,	the	Cox	proportional	hazard	model	allows	

explanatory	variables	to	multiplicatively	shift	the	baseline	hazard	function	without	

requiring	one	to	specify	a	particular	function	for	that	baseline	hazard.	Figure	1	presents	the	

estimated	baseline	hazard,	which	was	estimated	using	non‐parametric	methods.	Note	that	

the	hazard	function	initially	increases,	then	decreases	before	increasing	once	again.	Recall	

that	an	increasing	hazard	function	is	consistent	with	positive	duration	dependence	while	a	

decreasing	hazard	function	shows	negative	duration	dependence.	

	 The	coefficients	for	five	of	the	six	inspection	types	are	significant.	The	four	positive	

and	significant	coefficients	indicate	that	if	the	purpose	for	the	inspection	that	started	the	

spell	was	a	focused	inspection,	an	O&M	inspection,	a	groundwater	inspection,	or	a	

corrective	action	evaluation	the	hazard	rate	is	higher	and	thus	the	duration	of	the	spell	

shorter	than	the	duration	if	the	inspection	that	ended	the	spell	was	a	standard	compliance	

evaluation.	For	compliance	schedule	evaluations,	the	negative	and	significant	coefficient	

indicates	a	longer	standard	compliance	evaluation.	Three	of	the	six	inspector	types	also	

have	significant	coefficients.	Thus	if	the	federal	EPA	or	one	of	its	contractors	leads	the	

inspection	that	starts	the	spell,	the	duration	is	longer	than	if	the	state	leads	the	inspection.	

However,	if	the	state	has	oversight	but	does	not	lead,	the	duration	is	shorter	than	if	the	

inspection	is	led	by	the	standard	state	regulators.	If	the	inspection	that	begins	the	spell	is	

caused	by	a	citizen	complaint,	the	time	to	the	next	inspection	is	longer,	as	shown	by	the	

negative	and	significant	coefficient	on	Citizen	Complaint,	perhaps	because	inspections	

prompted	by	citizen	complaints	are	more	thorough	than	standard	inspections.		

	 Turning	now	to	the	facility‐level	variables,	the	positive	and	significant	coefficients	

on	TSDF	and	Commercial	TSDF	indicate	that	the	hazard	rate	is	higher	for	facilities	that	

store,	treat,	or	dispose	waste	than	for	generators	that	do	not	and	thus	the	time	between	

inspections	is	shorter.	Facilities	that	are	regulated	under	other	EPA	programs	in	addition	to	

RCRA	–	i.e.,	Multimedia	Facilities	–	also	have	a	higher	hazard	ratio	than	facilities	that	are	

only	regulated	under	RCRA.	This	could	be	due	to	the	fact	that	multimedia	facilities	are	
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usually	more	complex	than	single	media	facilities	and	thus	pose	a	higher	potential	threat	to	

human	health	and	the	environment.	Note	that	both	Waste	Management	and	Public	

Administration	also	have	positive	and	significant	coefficients.	The	first	result	is	consistent	

with	regulators	being	more	likely	to	inspect	facilities	for	whom	waste	management	is	their	

primary	activity	rather	than	facilities	the	generate	hazardous	waste	as	a	by‐product	of	their	

primary	activity.	The	positive	coefficient	on	Public	Administration	is	consistent	with	EPA’s	

policy	that	state	and	federal	facilities	be	inspected	every	year.	Whether	or	not	a	facility	is	a	

Manufacturing	facility	does	not	appear	to	have	a	significant	effect	on	spell	duration.	

	 In	terms	of	the	time‐specific	facility	variables,	all	three	of	the	quantity	variables	

have	positive	and	significant	coefficients	indicating	that	the	larger	a	facility	is,	the	shorter	

the	time	between	inspections.	This	is	consistent	with	inspectors	prioritizing	inspections	at	

facilities	with	larger	potential	impacts	on	the	environment.	While	the	coefficients	on	both	

of	the	facility	inspection	variables	are	positive,	only	the	coefficient	on	Prior	Year	Inspections	

is	significant.	Similarly,	although	the	coefficients	on	both	of	the	facility	violation	variables	

are	positive,	only	the	coefficient	on	Prior	5	Year	Violations	is	significant.	The	positive	

coefficients	on	these	variables	are	consistent	with	regulatory	targeting	–	that	is,	regulators	

targeting	facilities	with	poor	compliance	records	and	inspecting	them	with	a	higher	

frequency	than	generally	compliant	facilities	–	and	are	similar	to	Rousseau’s	(2007)	

findings	for	Flemish	textile	plants.	

	 The	two	State	Inspections	and	State	Violations	also	have	significant	coefficients.	

Interestingly,	the	coefficient	on	State	Inspections	is	negative	indicating	longer	spells	in	

states	with	more	inspections	and	the	coefficient	on	State	Violations	is	positive	indicating	

that	spells	are	shorter	in	states	that	have	more	violations	per	facility.	These	results	are	the	

opposite	of	expectations,	but	it	is	difficult	to	fully	interpret	these	state	variables	given	that	

the	model	also	includes	state	dummy	variables	as	well.	Although	not	reported	in	Table	3	in	

the	interests	of	saving	space,	30	of	the	49	state	dummy	variables	have	significant	

coefficients	and	they	are	all	jointly	significant.	Thirteen	of	the	significant	coefficients	are	

negative	indicating	the	spells	in	those	states	are	longer	than	spells	for	comparable	facilities	
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in	Ohio	and	17	are	positive	indicating	that	spells	in	those	states	are	shorter	than	spells	for	

comparable	facilities	in	Ohio.23		

	

Parametric	Model	Results	

As	discussed	in	Section	4,	by	making	an	initial	assumption	about	the	distribution	of	

the	hazard	function,	parametric	models	can	use	the	data	on	spells	more	efficiently	than	

semi‐parametric	models	if	the	distribution	is	specified	correctly.	This	study	considers	four	

commonly	used	parametric	models:	Exponential,	Weibull,	Gompertz,	and	Log‐Logistic.	For	

all	four	models,	the	models	include	the	same	explanatory	variables	that	were	used	in	the	

Cox	model	presented	in	Table	2	and	estimate	robust	standard	errors	clustered	by	facility.	

Qualitatively,	the	estimation	results	for	the	Exponential,	Weibull,	and	Gompertz	models	

were	all	quite	consistent.	Recall	that	the	Exponential	model	assumes	that	the	baseline	

hazard	rate	is	constant	while	the	Weibull	and	Gompertz	models	both	have	two	distribution	

parameters,		and	.	However,	if		equals	1	in	the	Weibull	model	it	reduces	to	an	

Exponential	model	and	if		equals	0	in	the	Gompertz	model,	it	also	reduces	to	the	

Exponential	model.	The	results	for	the	Weibull	model	and	the	Gompertz	model	both	fail	to	

reject	the	null	hypothesis	that	the	baseline	hazard	function	is	constant.	Thus	only	the	

results	for	the	Exponential	model	are	presented	in	Table	4.24		

The	results	are	qualitatively	very	similar	to	the	results	presented	in	Table	2.	There	

are	only	three	significant	changes.	First,	the	coefficient	on	State	Oversight	is	not	significant	

in	the	Exponential	model,	although	it	was	in	the	Cox	model.	However,	the	coefficient	is	

consistently	positive.	Second,	the	coefficients	on	Prior	5	Year	Inspections	and	State	

Violations	are	both	significant	in	the	Exponential	model	although	neither	was	in	the	Cox	

model.	In	these	cases	as	well,	the	signs	of	the	coefficients	are	the	same	across	the	two	

models.	Finally,	note	that	the	Exponential	model	includes	a	constant	term	although	the	Cox	

model	does	not.	In	the	Cox	model,	the	baseline	hazard	model	is	not	estimated	directly	and	

thus	there	is	no	need	to	fit	a	constant	term.	In	the	Exponential	model,	the	baseline	hazard	is	

estimated	to	be:	

																																																								
23	Of	course,	the	number	of	coefficients	that	are	significant	and	the	signs	of	those	
coefficients	depend	on	which	state	is	excluded	from	the	analysis.		
24	The	results	for	the	Weibull	and	Gompertz	models	are	available	upon	request.	
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	 0 t   e 	 (11)	

	

where		is	the	constant	terms	estimated	by	the	model.	Thus	the	baseline	hazard	in	this	

model	is	e‐5.67	 	0.003,	or	a	3	in	1000	chance	of	an	inspection	each	day,	regardless	of	the	

number	of	days	that	have	passed	since	the	last	inspection.	

While	the	Exponential,	Weibull,	and	Gompertz	model	are	usually	expressed	in	terms	

of	the	hazard	rate,	the	Log‐Logistic	model	is	most	easily	interpreted	an	accelerated	time‐

failure	model	where:	

	

	
ln t j  0  x jx  u j 	 (12)	

		

and	uj	is	assumed	to	follow	a	logistic	distribution.25	The	estimated	coefficients	have	to	be	

interpreted	differently	in	this	model	–	positive	coefficients	indicate	a	longer	spell	duration	

while	negative	coefficients	indicate	a	shorter	one.	(Recall	that	the	coefficients	presented	in	

Tables	3	and	4	change	the	hazard	rate	and	thus	a	positive	coefficient	indicates	a	higher	

hazard	rate	and	a	shorter	spell.)		

Table	5	presents	the	results	of	the	Log‐Logistic	Model.	Allowing	for	the	different	

interpretations	of	the	coefficients	between	the	Exponential	results	and	the	Log‐Logistic	

results,	there	is	one	primary	difference	as	well	as	a	number	of	less	significant	differences.	

The	most	significant	difference	in	the	Log‐Logistic	estimation	is	that	the	coefficient	on	Tons	

Generated	is	positive	and	significant	indicating	that	facilities	that	generate	more	waste	have	

a	longer	time	between	inspections.	This	result	is	contrary	to	the	positive	and	significant	

coefficient	on	Tons	Generated	in	the	Exponential	regression,	which	indicates	that	facilities	

that	generate	more	waste	have	a	shorter	time	between	inspections.	The	remaining	

differences	between	the	two	models	include	coefficients	that	are	significant	in	the	Log‐

Logistic	model	but	not	in	the	Exponential	model	even	though	the	signs	are	consistent	

across	the	two	models	(State	Oversight,	Local	Lead,	State	Contractor,	Used	Oil,	

Manufacturing),	coefficients	that	are	significant	in	the	Exponential	model	but	not	in	the	
																																																								
25	The	Exponential	and	Weibull	models	can	also	be	interpreted	as	accelerated	time‐failure	
models,	but	the	Gompertz	cannot.	
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Log‐Logistic	model	even	though	the	signs	are	consistent	across	the	two	models	(Citizen	

Complaint,	Multimedia	Facility,	Prior	Year	Inspections,	and	Prior	5	Year	Violations),	and	

coefficients	that	are	significant	in	the	Exponential	model	but	not	in	the	Log‐Logistic	model	

and	whose	signs	are	not	consistent	across	the	two	models	(State	Inspections	and	State	

Violations).	

Given	the	significant	differences	between	the	results	for	the	Exponential/Weibull/	

Gompertz	models	compared	to	the	Log‐Logistic,	one	can	use	the	Akaike	Information	

Criterion	(AIC)	to	determine	which	model	is	preferable.	As	discussed	at	the	end	of	section	

4,	the	AIC	captures	the	trade‐off	between	the	complexity	of	the	model	and	the	goodness	of	

fit	of	the	model	with	a	lower	AIC	indicating	a	better	fit.	As	shown	in	Table	6,	the	

Exponential,	Weibull,	and	Gompertz	models	have	virtually	the	same	AIC	and	all	have	a	

much	lower	AIC	than	the	Log‐Logistic.	Since	the	Exponential	model	is	very	straightforward	

and	performs	almost	as	well	as	the	more	complicated	Weibull	and	Gompertz	models,	the	

Exponential	model	is	used	for	the	next	stage	of	the	analysis.	

To	examine	how	well	the	Exponential	model	predicts	inspections,	the	median	

predicted	spell	length	for	each	observation	in	the	duration	database	is	calculated	using	the	

estimated	parameters	of	the	Exponential	model	presented	in	Table	4.	The	median	

predicted	spell	length	is	the	50th	percentile	of	the	survivor	function	from	zero	to	infinity	

given	each	observation’s	explanatory	variables	and	the	estimated	model	parameters.	

Figure	2	shows	the	median	predicted	spell	length	plotted	against	the	actual	spell	length	

with	the	dark	line	indicating	the	45‐degree	line.	Note	that	the	Exponential	model	is	not	

particularly	good	at	predicting	relatively	long	spells,	and	that	the	difference	between	the	

actual	and	predicted	spells	is	often	well	over	a	year.	This	point	is	demonstrated	more	

explicitly	in	Figure	3,	which	provides	a	frequency	distribution	of	the	difference	between	the	

actual	and	median	predicted	spell	length.	Of	the	almost	45,000	spells	in	the	analysis,	for	

around	15,000	spells	the	difference	between	the	actual	and	the	predicted	mean	spell	length	

is	over	a	year.	About	fifteen	percent	of	spells	are	over‐estimated	by	six	or	more	months	

while	over	thirty	percent	of	spells	are	under‐estimated	by	six	or	more	months.	Thus	while	

the	Exponential	model	is	among	the	best	of	the	duration	models	for	predicting	compliance	

inspections,	there	is	still	a	considerable	amount	of	uncertainty	about	the	timing	of	

compliance	inspections.	Using	the	Exponential	model,	it	would	certainly	be	difficult	to	
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predict	within	a	short	time	frame	(one	or	two	months)	when	a	compliance	inspection	is	

likely	to	occur.	

	

7. Comparison	of	Duration	Model	to	Other	Inspection	Models	

Even	though	the	Exponential	model	does	not	accurately	predict	a	significant	

percentage	of	inspections,	it	does	take	into	account	a	significant	amount	of	data	on	

individual	inspections.	Thus	it	might	be	the	case	that	the	Exponential	model	is	a	better	

predictor	of	aggregate	inspections	than	more	commonly	used	models	of	regulatory	

inspections.	As	discussed	in	the	introduction,	most	empirical	analyses	of	enforcement	and	

compliance	generally	estimate	the	likelihood	of	an	inspection	for	a	given	time	period	or	the	

number	of	inspections	for	a	given	time	period,	with	the	time	period	selected	based	on	the	

type	of	data	available.	For	RCRA,	the	most	obvious	time	period	is	a	year	since	data	on	waste	

generation	and	management	is	reported	annually.	To	compare	the	predictions	of	the	

Exponential	model	to	annual	inspection	models,	the	median	predicted	spell	length	was	

used	to	create	a	database	of	predicted	inspection	dates	that	were	then	aggregated	by	year	

to	create	a	count	of	the	number	of	predicted	inspections	in	each	calendar	year.	Figure	4	

plots	the	predicted	inspections	using	the	Exponential	median	compared	to	the	actual	

inspections	that	take	place	each	year.	While	there	are	some	outliers,	note	that	the	model	

does	a	pretty	good	job	of	predicting	the	number	of	annual	inspections	across	the	entire	

support	and	is	particularly	accurate	as	the	number	of	inspections	per	year	increases.		

For	comparison	purposes,	a	Poisson	count	model	was	used	to	estimate	the	annual	

number	of	inspections	conducted	at	regulated	entities.26	The	database	for	this	analysis	

contains	the	annual	inspections	conducted	at	each	of	the	6,382	regulated	entities	included	

in	the	Exponential	analysis	for	each	of	the	eleven	years	in	the	study	period	for	a	total	of	

70,202	entity‐year	observations.27	For	explanatory	variables,	the	model	includes	all	of	the	

facility‐specific	and	state‐specific	variables	used	in	the	exponential	analysis,	but	since	the	

																																																								
26	The	Poisson	regression,	unlike	a	standard	OLS	regression,	takes	into	account	the	fact	that	
the	number	of	inspections	is	a	count	variable,	i.e,	a	non‐negative	integer.		
27	While	there	were	6,430	entities	in	the	initial	database,	recall	that	the	Exponential	model	
uses	state‐specific	data,	and	thus	48	entities	in	DC,	Puerto	Rico,	Guam,	and	the	Virgin	
Islands	were	dropped	from	the	analysis.	
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analysis	is	an	annual	one,	none	of	the	spell‐specific	variables	are	included.28	The	results	of	

the	regression	are	presented	in	Table	7.	Figure	5	shows	the	predicted	number	of	

inspections	from	the	Poisson	model	plotted	against	the	actual	inspections	that	take	place	

each	year.	Comparing	to	Figure	5	to	Figure	4,	note	that	the	Poisson	model	appears	to	

under‐predict	the	number	of	inspections	when	the	actual	count	is	below	40	and	over‐

predict	the	number	when	the	actual	count	is	50	or	more.	

To	better	compare	these	two	models,	Table	8	compares	the	accuracy	of	the	models	

across	various	segments	of	the	universe.29	First	note	that	the	Poisson	model	is	better	at	

predicting	which	facilities	will	have	no	inspections,	correctly	predicting	no	inspections	81	

percent	of	the	time	compared	the	Exponential	model’s	73	percent	correct	predictions.	

However,	the	Poisson	model	estimates	a	higher	mean	number	of	predicted	inspections	for	

facilities	in	this	category	than	the	Exponential	models	does	–	thus	if	one	cares	primarily	

about	the	total	predicted	number	of	inspections,	the	Exponential	model	performs	better	

than	the	Poisson	model	for	this	category.	For	facilities	with	only	one	inspection	in	a	given	

year,	the	Poisson	model	also	is	correct	a	higher	percentage	of	the	time	–	37	percent	versus	

32	percent	for	the	Exponential	model.	Both	models	under‐predict	the	mean	number	of	

inspections,	although	for	this	category	the	Poisson	model	is	closer	to	the	actual	mean	than	

the	Exponential	model	is.	For	all	of	the	remaining	categories,	the	Exponential	model	does	a	

better	job	of	correctly	predicting	the	number	of	inspections	both	in	terms	of	the	percentage	

correct	and	the	mean	number	of	inspections.	If	one	were	to	consider	all	facilities	with	at	

least	one	inspection	together,	for	that	group	the	Exponential	model	also	has	the	highest	

number	of	correct	predictions	and	is	closer	to	the	true	mean.	Thus	which	model	would	be	

more	appropriate	for	predicting	annual	inspections	depends	on	the	question	the	

researcher	wants	to	answer	and	whether	it	is	more	important	to	correctly	identify	facilities	

that	are	inspected	or	are	not	inspected.	
																																																								
28	In	the	Exponential	analysis,	there	is	a	set	of	variables	capturing	the	number	of	
inspections	and	violations	conducted	at	the	facility	in	the	12	months	and	5	years	prior	to	
the	start	of	each	spell.	For	the	Poisson	analysis	similar	variables	are	constructed	for	the	12	
months	and	5	years	prior	to	the	start	of	each	calendar	year.	
29	Although	the	Poisson	model	takes	into	account	the	integer	nature	of	the	inspection	
variable,	the	prediction	the	model	generates	is	the	estimated	mean	of	the	number	of	
inspections.	Therefore	the	Poisson	predictions	are	rounded	to	the	nearest	integer	to	
identify	“correct	predictions.”	
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Because	many	inspection	models	examine	not	the	number	of	inspections,	but	rather	

whether	any	inspections	are	conducted	over	a	certain	period,	a	Probit	analysis	was	

conducted	to	estimate	the	probability	that	at	least	one	inspection	took	place	in	a	calendar	

year.	Table	9	presents	the	results	of	this	analysis.	The	same	facility‐specific	and	state‐

specific	explanatory	variables	are	used	in	this	analysis	as	in	the	analysis	presented	in	Table	

8,	but	the	dependent	variable	is	a	binary	variable	equal	to	1	if	any	inspection	occurred	at	

the	regulated	entity	in	a	given	year.	To	compare	the	results	of	the	Probit	model	to	the	

Exponential	model,	Table	10	compares	the	predictions	of	each	model	to	the	actual	

inspections.30	As	shown,	the	Probit	model	correctly	predicts	40,083	of	the	43,968	entity‐

year	observations	where	there	is	no	inspection	while	the	Exponential	model	correctly	

predicts	only	32,235	of	these	observations.	Thus	the	Probit	model	is	a	better	predictor	of	

situations	where	there	is	no	inspection.	Once	again	Exponential	model	is	a	better	predictor	

of	inspections,	correctly	predicting	12,863	of	the	26,234	observations	where	an	inspection	

occurs	compared	to	11,107	predicted	by	the	Probit	model.	Overall,	the	Probit	model	is	

correct	approximately	73	percent	of	the	time	while	the	Exponential	model	is	correct	about	

64	percent	of	the	time.	However,	which	model	is	a	“better”	predictor	depends	on	the	

relative	importance	of	Type	I	and	Type	II	errors.	The	Probit	model	results	in	21.5	percent	

Type	II	errors	(i.e.	false	negatives	where	no	inspection	is	predicted	even	though	there	

actually	is	an	inspection)	but	only	5.5	percent	Type	I	errors	(i.e.	false	positives	where	an	

inspection	is	predicted	even	though	there	is	no	inspection).	On	the	other	hand	the	

Exponential	model	results	in	only	19	percent	Type	II	errors,	but	16.7	percent	Type	I	errors.	

	

8. Conclusions		

The	primary	objective	of	this	paper	is	to	examine	the	timing	of	environmental	

compliance	inspections	and	determine	the	extent	to	which	such	inspections	can	be	

predicted.	The	analysis	considered	a	number	of	different	duration	models	that	use	

information	on	individual	inspections,	facility	characteristics,	and	state	factors	to	predict	

the	timing	of	compliance	inspections.	Of	the	models	considered,	the	Exponential	model	

																																																								
30	Because	the	Probit	model	predicts	a	probability	of	inspection,	for	any	observation	where	
the	predicted	probability	of	an	inspection	was	greater	than	0.5,	the	Probit	model	is	credited	
with	a	predicted	inspection.	
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provides	the	best	balance	in	terms	of	the	explanatory	power	of	the	model	and	the	

simplicity	of	the	model.	However,	even	when	one	uses	detailed	information	about	

individual	inspections	and	facility	characteristics	to	predict	inspection	dates,	the	

Exponential	model	is	not	able	to	accurately	predict	a	significant	percentage	of	inspections.	

Thus	there	remains	significant	uncertainty	about	the	likely	timing	compliance	inspections	

in	the	RCRA	program,	and	the	assumption	that	such	inspections	are	probabilistic	appears	

to	be	valid.		

A	secondary	objective	of	this	paper	is	to	determine	the	extent	to	which	using	

detailed	information	on	individual	inspections	and	the	Exponential	model	can	improve	

empirical	predictions	of	the	timing	of	inspections.	If	the	goal	is	to	estimate	the	annual	

number	of	inspections,	neither	the	Exponential	model	or	the	Poisson	model	is	a	clear	

winner.	While	the	Poisson	model	is	better	at	predicting	which	facilities	have	no	or	one	

inspection,	the	Exponential	model	is	better	at	predicting	multiple	inspections.	Also,	the	

Exponential	model	is	better	at	predicting	the	mean	number	of	inspections	for	facilities	that	

are	inspected.	Similarly,	if	the	focus	is	on	whether	any	inspection	occurred	in	a	given	time	

period	(rather	than	the	number	of	inspections	during	that	time	period),	the	benefits	of	

using	the	Exponential	model	depend	on	the	nature	of	the	questions	to	be	answered.	While	

the	Exponential	model	performs	better	than	the	Probit	model	in	predicting	which	entities	

will	be	inspected,	it	also	results	in	a	higher	number	of	“false	positives,”	that	is	predicting	an	

inspection	when	no	inspection	actually	occurs.	Thus	which	model	is	a	better	model	

depends	on	what	question	the	research	wants	to	answer	and	whether	Type	I	or	Type	II	

errors	are	more	important.	

		
	



	 27

References:	
	
Becker,	Gary	S.	1968.	“Crime	and	Punishment:	An	Economic	Approach.”	Journal	of	Political	

Economy,	76:169‐172.	
	
Cohen,	Mark.	1999.	“Monitoring	and	Enforcement	of	Environmental	Policy”	in	International	

Yearbook	of	Environmental	and	Resource	Economics,	III,	Edited	by	Tom	Tietenberg	
and	Henk	Folmer,	Cheltenham,	UK:	Edward	Elgar	Publishing.	

	
Cox,	D.	R.	1972.	“Regression	Models	and	Life‐Tables,”	Journal	of	the	Royal	Statistical	Society	

34:	187‐220.	
	
Earnhart,	Dietrich.	2004.	“Regulatory	Factors	Shaping	Environmental	Performance	at	

Publicly	Owned	Treatment	Plants,”	Journal	of	Environmental	Economics	and	
Management	48:	655–81.	

	
Friesen,	Lana.	2003.	“Targeting	Enforcement	to	Improve	Compliance	with	Environmental	

Regulations,”	Journal	of	Environmental	Economics	and	Management	46:72‐85.	
	
Glicksman,	R.,	and	Dietrich	Earnhart.	2007.	“The	Comparative	Effectiveness	of	Government	

Interventions	on	Environmental	Performance	in	the	Chemical	Industry,”	Stanford	
Environmental	Law	Journal	26:	317–71.	

	
Gray,	Wayne	and	Mary	Deily.	1996.	“Compliance	and	Enforcement:	Air	Pollution	Regulation	

in	the	U.S.	Steel	Industry,”	Journal	of	Environmental	Economics	and	Management	31:	
96–111.	

	
Gray,	Wayne	and	Ron	Shadbegian.	2005.	“When	and	Why	Do	Plants	Comply?	Paper	Mills	in	

the	1980s,”	Law	and	Policy	27:	238–61.	
	
Gray,	Wayne	B.	and	Jay	P.	Shimshack.	2011.	“The	Effectiveness	of	Environmental	

Monitoring	and	Enforcement:	A	Review	of	the	Empirical	Evidence,”	Review	of	
Environmental	Economics	and	Policy	5:3–24.	

	
Harford,	John	and	Winston	Harrington.	1991.	“A	Reconsideration	of	Enforcement	Leverage	

When	Penalties	Are	Restricted,”	Journal	of	Public	Economics	45:391‐195.	
	
Harrington,	Winston.	1988.	“Enforcement	Leverage	When	Penalties	Are	Restricted,”	Journal	

of	Public	Economics	37:29‐53.	
	
Helland,	Eric.	1998.	“The	Enforcement	of	Pollution	Control	Laws:	Inspections,	Violations,	

and	Self‐Reporting,”	Review	of	Economics	and	Statistics	80:141‐153.	
	
Heyes,	Anthony.	2000.	“Implementing	Environmental	Regulation:	Enforcement	and	

Compliance,”	Journal	of	Regulatory	Economics,	17(2):107‐129.	
	



	 28

Nadeau,	Louis	W.	1997.	“EPA	Effectiveness	at	Reducing	the	Duration	of	Plant‐Level	
Noncompliance,”	Journal	of	Environmental	Economics	and	Management,	34(1):54–
78.	

	
Nyborg,	Karine	and	Kjetil	Telle.	2006.	“Firms’	Compliance	to	Environmental	Regulation:	Is	

There	Really	a	Paradox?,”	Environmental	and	Resource	Economics	35(1):1‐18.	
	
Polinsky,	Mitchell	and	Steven	Shavell.	2000.	“The	Economic	Theory	of	Public	Enforcement	

of	Law,”	Journal	of	Economic	Literature,	38(1):45‐76.	
	
Raymond,	Mark.	1999.	“Enforcement	Leverage	When	Penalties	Are	Restricted:	A	

Reconsideration	Under	Asymmetric	Information,”	Journal	of	Public	Economics	73:	
289‐295.	

	
Rousseau,	Sandra.	2007.	“Timing	of	Environmental	Inspections:	Survival	of	the	Compliant,”	

Journal	of	Regulatory	Economics	32:17‐36.	
	
Russell,	Clifford	S.,	Winston	Harrington	and	William	J.	Vaughan.	1986.	Economic	Models	of	

Monitoring	and	Enforcement:	Enforcing	Pollution	Control	Laws,	Washington,	D.C:	
Resources	for	the	Future.	

	
Stafford,	Sarah.	2007.	“Should	You	Turn	Yourself	In?	The	Consequences	of	Environmental	

Self‐Policing,”	Journal	of	Policy	Analysis	and	Management	26:305‐326	
	
Stafford,	Sarah.	2002.	“The	Effect	of	Punishment	on	Firm	Compliance	with	Hazardous	

Waste	Regulations,”	Journal	of	Environmental	Economics	and	Management	44:290–
308.	

	
Steinway,	Daniel	M.	2009.	“Fundamentals	of	Environmental	Law,”	in	Environmental	Law	

Handbook	Ed.	by	Thomas	F.P.	Sullivan.	Government	Institutes:	Lanham,	MD.	
	
Wooldridge,	Jeffrey.	2010.	Econometric	Analysis	of	Cross	Section	and	Panel	Data,	2nd	

edition.	Cambridge,	MA:	The	MIT	Press.	
	



	 29

Table	1:	Breakdown	of	2010	RCRA	Inspections		
	

Primary	Inspection	Type	 Number	of	Inspections	 Percent	of	Inspections	
Compliance	Evaluation	Inspection	 19,492	 60%	
Focused	Compliance	Inspection	 3,819	 12%	
Non‐Financial	Record	Review	 2,856	 9%	
Compliance	Assistance	Visit	 962	 3%	
Financial	Record	Review	 1,066	 3%	
Other	 4,045	 13%	
Inspector	Type	 Number	of	Inspections	 Percent	of	Inspections	
State	 29,763	 92%	
EPA	 1,608	 5%	
State	Contractor	 466	 1%	
EPA	Contractor	 381	 1%	
Other	 22	 <1%	



	 30

Table	2:	Description	of	Explanatory	Variables	
	

Variable	Name	 Description	 Mean	 SD	
Spell‐Specific	Data	
Compliance	Evaluation*	

Dummy	variables	indicating	the	type	
of	inspection	that	begins	the	spell.	

0.70	 0.46	
Focused	Inspection	 0.17	 0.38	
O&M	Inspection	 	 	
Compliance	Schedule	
Evaluation	

0.06	 0.24	

Follow‐up	Inspection	 0.02	 0.14	
Groundwater	Monitoring	 0.01	 0.11	
Corrective	Action	Eval.	 0.01	 0.10	
EPA	Lead	

Dummy	variables	indicating	the	type	
of	inspector	at	the	inspection	that	
begins	the	spell.	

0.07	 0.26	
State	Lead*	 0.90	 0.30	
EPA	Oversight	 0.00	 0.05	
State	Oversight	 0.00	 0.01	
Local	Lead	 0.00	 0.05	
EPA	Contractor	 0.00	 0.07	
State	Contractor	 0.01	 0.12	
Citizen	Complaint	 =1	if	the	beginning	inspection	is	due	to	

a	citizen	compliant.	
0.01	 0.11	

Multimedia	Inspection	 =	1	if	the	beginning	inspection	includes	
other	EPA	programs.	

0.03	 0.16	

Facility	Characteristics	
TSDF	 =	1	if	the	facility	treats,	stores,	or	

disposes	of	hazardous	waste.	
0.37	 0.48	

Commercial	TSDF	 =1	if	the	facility	is	sells	treatment,	
storage,	or	disposal	services.	

0.24	 0.43	

Used	Oil	Facility	 =	1	if	the	facility	manages	used	oil.	 0.12	 0.33	
Multimedia	Facility	 =	1	if	the	facility	is	regulated	under	

other	EPA	programs.	
0.89	 0.32	

Waste	Management	 =	1	if	the	facility’s	main	industry	is	
waste	management.	

0.25	 0.43	

Public	Administration	 =	1	if	the	facility’s	main	industry	is	
public	administration.	

0.05	 0.22	

Manufacturing	 =	1	if	the	facility’s	main	industry	is	
manufacturing.	

0.58	 0.49	

Tons	Generated	 =	log	of	tons	of	waste	generated	in	the	
calendar	year	prior	to	the	start	of	the	
spell.	

2.84	 8.38	

Tons	Managed	 =	log	of	tons	of	waste	managed	in	
calendar	year	prior	to	the	start	of	the	
spell.	

‐10.63	 10.06	
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Variable	Name	 Description	 Mean	 SD	
Tons	Received	from	
Offsite	

=	log	of	tons	of	waste	received	for	
management	in	the	calendar	year	prior	
to	the	start	of	the	spell.	

‐9.54	 10.89	

Prior	Year	Inspections	 =	number	of	inspections	in	the	year	
prior	to	the	start	of	the	spell.	

6.20	 15.17	

Prior	5	Year	Inspections	 =	number	of	inspections	in	the	5	years	
prior	to	the	start	of	the	spell.	

25.55	 60.94	

Prior	Year	Violations	 =	number	of	violations	in	the	year	
prior	to	the	start	of	the	spell.	

2.78	 13.56	

Prior	5	Year	Violations	 =	number	of	violations	in	the	5	years	
prior	to	the	start	of	the	spell.	

15.73	 60.42	

State	Characteristics	
State	Inspections	 =	total	state	inspections	in	the	

calendar	year	prior	to	the	start	of	the	
spell,	normalized	by	the	number	of	
RCRA	facilities.	

0.03	 0.03	

State	Violations	 =	total	state	violations	in	the	calendar	
year	prior	to	the	start	of	the	spell,	
normalized	by	the	number	of	RCRA	
facilities.	

0.05	 0.04	

State	Dummies	 =	set	of	binary	indicator	variables	for	
each	of	the	50	states,	excluding	Ohio	

		N/A		 		N/A		

*Category	excluded	from	the	regression.		
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Table	3:	Results	of	the	Cox	Proportional	Hazard	Model	
	
Variable	 Coefficient	 Standard	Error†	 Hazard	Ratio
Focused	Inspection	 0.556**	 0.053	 1.744	
O&M	Inspection	 0.743**	 0.071	 2.103	
Compliance	Schedule	Evaluation	 ‐0.226**	 0.031	 0.797	
Follow‐up	Inspection	 ‐0.004	 0.047	 0.996	
Groundwater	Monitoring	 0.534**	 0.056	 1.704	
Corrective	Action	Eval.	 0.793**	 0.102	 2.210	
EPA	Lead	 ‐0.101**	 0.026	 0.904	
EPA	Oversight	 0.039	 0.180	 1.040	
State	Oversight	 0.443*	 0.236	 1.558	
Local	Lead	 0.029	 0.079	 1.029	
EPA	Contractor	 ‐0.323**	 0.109	 0.724	
State	Contractor	 ‐0.022	 0.074	 0.978	
Citizen	Complaint	 ‐0.265**	 0.065	 0.767	
Multimedia	Inspection	 0.006	 0.036	 1.006	
TSDF	 0.481**	 0.055	 1.618	
Commercial	TSDF	 0.216**	 0.089	 1.241	
Used	Oil	Facility	 0.064	 0.082	 1.066	
Multimedia	Facility	 0.127**	 0.038	 1.136	
Waste	Management	 0.362**	 0.100	 1.436	
Public	Administration	 0.371**	 0.073	 1.449	
Manufacturing	 ‐0.028	 0.042	 0.972	
Tons	Generated	 0.009**	 0.002	 1.010	
Tons	Managed	 0.007**	 0.002	 1.007	
Tons	Received	from	Offsite	 0.013**	 0.004	 1.013	
Prior	Year	Inspections	 0.041**	 0.004	 1.042	
Prior	5	Year	Inspections	 0.001	 0.001	 1.001	
Prior	Year	Violations	 0.001	 0.001	 1.001	
Prior	5	Year	Violations	 0.001**	 0.000	 1.001	
State	Inspections	 ‐6.047**	 1.223	 0.002	
State	Violations	 0.088	 0.290	 1.092	
State	dummies	are	included	in	the	regression	but	are	omitted	from	the	table.	
†	Standard	errors	are	clustered	by	facility;	**	Significant	at	the	1%	level;	*Significant	at	the	5%	level.	
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Table	4:	Results	of	the	Exponential	Model	
	
Variable	 Coefficient	 Standard	Error†	 Hazard	Ratio
Focused	Inspection	 0.566**	 0.052	 1.762	
O&M	Inspection	 0.741**	 0.071	 2.099	
Compliance	Schedule	Evaluation	 ‐0.245**	 0.031	 0.783	
Follow‐up	Inspection	 0.011	 0.047	 1.011	
Groundwater	Monitoring	 0.537**	 0.056	 1.711	
Corrective	Action	Eval.	 0.769**	 0.105	 2.157	
EPA	Lead	 ‐0.095**	 0.026	 0.910	
EPA	Oversight	 0.016	 0.199	 1.016	
State	Oversight	 0.275	 0.229	 1.316	
Local	Lead	 ‐0.002	 0.078	 0.998	
EPA	Contractor	 ‐0.281**	 0.110	 0.755	
State	Contractor	 ‐0.092	 0.074	 0.912	
Citizen	Complaint	 ‐0.275**	 0.066	 0.759	
Multimedia	Inspection	 0.019	 0.036	 1.020	
TSDF	 0.497**	 0.055	 1.643	
Commercial	TSDF	 0.222**	 0.089	 1.249	
Used	Oil	Facility	 0.061	 0.082	 1.063	
Multimedia	Facility	 0.129**	 0.038	 1.137	
Waste	Management	 0.361**	 0.102	 1.434	
Public	Administration	 0.370**	 0.073	 1.448	
Manufacturing	 ‐0.030	 0.043	 0.971	
Tons	Generated	 0.009**	 0.002	 1.009	
Tons	Managed	 0.007**	 0.002	 1.007	
Tons	Received	from	Offsite	 0.012**	 0.004	 1.013	
Prior	Year	Inspections	 0.037**	 0.004	 1.038	
Prior	5	Year	Inspections	 0.002**	 0.001	 1.002	
Prior	Year	Violations	 0.000	 0.001	 1.000	
Prior	5	Year	Violations	 0.001**	 0.000	 1.001	
State	Inspections	 ‐2.844**	 1.183	 0.058	
State	Violations	 0.461*	 0.279	 1.586	
Constant	 ‐5.674	 0.192	 NA	
State	dummies	are	included	in	the	regression	but	are	omitted	from	the	table.	
†	Standard	errors	are	clustered	by	facility;	**	Significant	at	the	1%	level;	*Significant	at	the	5%	level.	
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Table	5:	Results	of	the	Log‐Logistic	Model	
	
Variable	 Coefficient	 Standard	Error†	
Focused	Inspection	 ‐0.393**	 0.052	
O&M	Inspection	 ‐0.458**	 0.123	
Compliance	Schedule	Evaluation	 0.275**	 0.037	
Follow‐up	Inspection	 0.020	 0.052	
Groundwater	Monitoring	 ‐0.464**	 0.096	
Corrective	Action	Eval.	 ‐0.572**	 0.199	
EPA	Lead	 0.098**	 0.030	
EPA	Oversight	 ‐0.126	 0.200	
State	Oversight	 ‐2.526**	 0.258	
Local	Lead	 0.348**	 0.085	
EPA	Contractor	 0.216*	 0.114	
State	Contractor	 0.350*	 0.064	
Citizen	Complaint	 0.056	 0.080	
Multimedia	Inspection	 ‐0.018	 0.049	
TSDF	 ‐0.362**	 0.047	
Commercial	TSDF	 ‐0.109*	 0.061	
Used	Oil	Facility	 ‐0.137**	 0.063	
Multimedia	Facility	 ‐0.037	 0.030	
Waste	Management	 ‐0.141**	 0.055	
Public	Administration	 ‐0.275**	 0.061	
Manufacturing	 ‐0.064**	 0.027	
Tons	Generated	 0.033**	 0.001	
Tons	Managed	 ‐0.011**	 0.001	
Tons	Received	from	Offsite	 ‐0.005**	 0.002	
Prior	Year	Inspections	 0.016	 0.020	
Prior	5	Year	Inspections	 ‐0.120*	 0.011	
Prior	Year	Violations	 ‐0.003	 0.002	
Prior	5	Year	Violations	 ‐0.001	 0.001	
State	Inspections	 ‐0.097	 0.728	
State	Violations	 0.544	 0.426	
Constant	 6.961**	 0.235	
Gamma	 0.287**	 0.008	
State	dummies	are	included	in	the	regression	but	are	omitted	from	the	table.	
†	Standard	errors	are	clustered	by	facility;	**	Significant	at	the	1%	level;	*Significant	at	the	5%	level.	
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Table	6:	AIC	Values	for	the	Parametric	Models	
	

Model	 Log	Likelihood	 AIC	
Cox	Proportional	Hazards	 ‐340,034	 680,225	
Exponential		 28,311	 ‐56,462	
Weibull	 28,317	 ‐56,473	
Gompertz	 28,390	 ‐56,619	
Log‐Logistic	 1,157	 ‐2,152	

	
	

Table	7:	Results	of	the	Tobit	and	Poisson	Model	of	Annual	Inspections	
	

Explanatory	Variables	

Tobit	Model	 Poisson	Model	

Coefficient	
Standard	
Error†	 Coefficient	

Standard	
Error†	

TSDF	 0.304**	 0.069	 0.530**	 0.058	
Commercial	TSDF	 0.323**	 0.091	 0.228**	 0.090	
Used	Oil	Facility	 0.337**	 0.140	 0.116	 0.092	
Multimedia	 0.156**	 0.036	 0.161**	 0.042	
Waste	Management	 ‐0.001	 0.098	 0.307**	 0.112	
Public	Administration	 0.624**	 0.081	 0.466**	 0.081	
Manufacturing	 0.043	 0.033	 ‐0.061	 0.045	
Prior	Year	Tons	Generated	 0.004	 0.010	 0.037**	 0.006	
Prior	Year	Tons	Managed	 0.005**	 0.002	 0.009**	 0.002	
Prior	Year	Tons	Received	
from	Offsite	 0.012**	 0.003	 0.015**	 0.004	
Prior	Year	Inspections	 0.460**	 0.077	 0.035**	 0.006	
Prior	5	Year	Inspections	 0.075**	 0.011	 0.004**	 0.001	
Prior	Year	Violations	 ‐0.015**	 0.003	 0.0002	 0.0001	
Prior	5	Year	Violations	 ‐0.0003	 0.0004	 0.0003**	 0.0001	
Prior	Year	State	Inspections	 3.558**	 1.250	 0.222	 1.392	
Prior	Year	State	Violations	 ‐0.474	 0.371	 ‐0.259	 0.216	
Constant	 ‐1.914**	 0.137	 ‐1.034**	 0.104	
State	dummies	are	included	in	the	regression	but	are	omitted	from	the	table.	
†	Standard	errors	are	clustered	by	facility;	**	Significant	at	the	1%	level;	*Significant	at	the	5%	level.	
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Table	8:	Comparison	of	Exponential	and	Poisson	Predictions		
	

Actual	Number	
of	Annual	
Inspections	

Number	
of	Obs.	

Number	of	Correct	
Predictions	 Mean	Number	of	Inspections	

Exponential	
Model	

Poisson	
Model	 Actual	

Exponential	
Model	

Poisson	
Model	

Not	Inspected	 43,968	 32,235
(73%)	

35,438
(81%)	

0 0.30	 0.41

One		 19,731	 6,471
(32%)	

7,352
(37%)	

1 0.52	 0.61

Two	to	Five		 6,074	 1,608
(26%)	

717
(12%)	

2.41 1.49	 1.17

Six	to	Ten		 182	 48
(26%)	

5
(3%)	

7.26 6.57	 2.94

Eleven	to	Twenty		 115	 40
(35%)	

0
(0%)	

13.90 13.17	 4.87

More	than	20		 132	 37
(28%)	

1
(1%)	

38.65 30.16	 33.05

Overall	 70,202	 40,439
(58%)	

43,513
(62%)	

0.60 0.58	 0.60

	
Table	9:	Results	of	the	Probit	Model	of	Annual	Inspections	

	
Variable	 Coefficient	 Standard	Error†	
TSDF	 0.536**	 0.037	
Commercial	TSDF	 0.161**	 0.059	
Used	Oil	Facility	 0.049	 0.050	
Multimedia	 0.079**	 0.019	
Waste	Management	 0.020	 0.044	
Public	Administration	 0.443**	 0.044	
Manufacturing	 0.016	 0.017	
Prior	Year	Tons	Generated	 0.019**	 0.003	
Prior	Year	Tons	Managed	 0.004**	 0.001	
Prior	Year	Tons	Received	from	Offsite 0.014**	 0.002	
Prior	Year	Inspections	 ‐0.115**	 0.010	
Prior	5	Year	Inspections	 0.074**	 0.004	
Prior	Year	Violations	 0.001*	 0.0007	
Prior	5	Year	Violations	 ‐0.0002	 0.0002	
Prior	Year	State	Inspections	 6.359**	 0.696	
Prior	Year	State	Violations	 ‐0.182	 0.200	
Constant	 ‐0.474**	 0.065	
State	dummies	are	included	in	the	regression	but	are	omitted	from	the	table.	
†	Standard	errors	are	clustered	by	facility;	**	Significant	at	the	1%	level;	*Significant	at	the	5%	level.	
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Table	10:	Comparison	of	Probit	and	Exponential	Model	Results	
	

Status	 Actual		
Observations	

Probit	Model	Predictions	 Exponential	Model	
Predictions	

Entity	Not	
Inspected	

43,968	 Not	Insp.:	40,083	(57.1%)	 Not	Insp.:	32,235	(45.9%)	
Inspected:	3,885	(5.5%)	 Inspected:	11,733	(16.7%)	

Entity	
Inspected	

26,234	 Not	Insp.:	15,127	(21.5%)	 Not	Insp.:	13,371	(19.0%)	
Inspected:	11,107	(15.8%)	 Inspected:	12,863	(18.3%)	
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Figure	1:	Estimated	Baseline	Hazard	for	the	Cox	Proportional	Hazard	Model	
	

	
	

Figure	2:	Median	Predicted	Spell	Length	from	Exponential	Model	
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Figure	3:	Distribution	of	Difference	Between	Actual	and	Predicted	Spell	Length	
	

	

	
Figure	4:	Predicted	Annual	Inspections	from	Exponential	Model	

Compared	to	Actual	Annual	Inspections	



	 40

Figure	5:	Predicted	Annual	Inspections	from	Poisson	Model	
Compared	to	Actual	Annual	Inspections		

	
	


