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Abstract

In this paper, we measure the degree of fractional integration in final energy demand in Portugal
using an ARFIMA model with and without adjustments for seasonality. We consider aggregate
energy demand as well as final demand for petroleum, electricity, coal, and natural gas. Our
findings suggest the presence of long memory in all of the energy demand variables. All
fractional-difference parameters are positive and lower than 0.5 indicating that the series are
stationary, although the mean reversion process will be slower than in the typical short run
processes. These results have important implications for the design of energy policies. The
effects of temporary policy shocks on final energy demand will tend to disappear slowly as a
result of the long-memory process. This means that even transitory shocks have long lasting
effects. Given the temporary nature of these effects, however, permanent effects on final energy
demand require permanent policies. This is unlike what would be suggested by the more
standard but much more limited unit root approach, which would incorrectly indicate that even
transitory policies would have permanent effects.
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Does Final Energy Demand in Portugal Exhibit Long Memory?
A Fractional Integration Analysis

1. Introduction

Understanding persistence in final energy demand is crucial for the design, the
implementation, and the effectiveness of the energy and environmental policies. First,
if energy consumption is stationary, then public policies that promote energy
efficiency, fuel switching or reductions in greenhouse gas emissions, will tend to have
transitory effects, thereby requiring a permanent policy stance [see, Lean and Smyth
(2009), Gil-Alana et al. (2010), and Apergis and Tsoumas (2012)]. Second, a low degree
of persistence means that energy consumption returns to its trend path after a shock
so that past behavior can appropriately be used to predict future energy consumption
[see Lean and Smyth (2009) and Smyth (2012)]. Finally, given the strong connection of
the energy sector to the rest of the economy, if the effects of shocks to energy
consumption are transitory but last long then such effects may be transmitted to other
sectors of the economy as well as to macroeconomic variables [see Lean e Smyth

(2009), Gil-Alana et al. (2010)].

There is a vast literature using traditional autoregressive univariate unit roots methods
to test the stationary properties of energy variables [see, for example, Altinay and
Karagol (2004), Lee and Chang (2005, 2008), Narayan and Smyth (2005, 2007), Hsu and
Lee (2008), Lee and Lee (2009), Narayan et al. (2008) and Smyth (2012)]. Recent
evidence with panel data tests that accommodate structural breaks provide strong

support for the stationarity of energy consumption and production.

Traditional autoregressive univariate unit root tests, however, are limited to the
stationary/non-stationary dichotomy. Their power to reject the null hypothesis
depends on several factors such as structural breaks, non-linearities, and the existence
of long memory or fractional integration, all of them likely to affect energy variables
[see, for example, Narayan and Smyth (2007), Hasanov and Telatar (2011), Apergis
and Payne (2010), Narayan et al. (2010), Aslan and Kum (2011)]. More importantly



from our perspective, the unit root tests only provide evidence about the existence or
absence of a permanent component but not its extent. That is, the unit root test only
confirms that the current value of a variable is determined by its past behavior but is

unable to identify how distant in time that influence extends.

There is now a growing literature on fractional integration going beyond the
stationary/non-stationary dichotomy to consider the possibility that variables may
follow a long memory process [see, for example, Palma (2007)]. This long range
dependence is characterized by a hyperbolically decaying autocovariance function and
by a spectral density that tends to infinity as frequency tends to zero. The intensity of
this phenomena can be measured by a differencing parameter “d”, which includes the
stationary case (d = 0) and the non-stationary case (d = 1) as particular cases. When
d < 1 the process is mean reverting. For 0.5 < d < 1, the process is not covariance
stationary thought mean reverting. When —0.5 < d < 0.5 the process is said to be
covariance stationary and ergodic with a bounded and positively value spectrum at all
frequencies. When —0.5 < d < 0 the process is called intermediate memory or over
differenced. In turn, when 0 < d < 0.5, the process is stationary but displays long
memory in the sense that its autocorrelation function decay exponentially, rather than

geometrically as in the case of short memory (d = 0).

In this context, long memory represents an important and nuanced situation that goes
beyond the stationary/non-stationary paradigm. It reflects a significant dependence
between observations widely separated in time. Therefore, the effects of shocks,
although mean reverting, tend to decay slowly. From a policy perspective, the
existence of long memory implies that the effects of transitory policies are long-lasting.
It also implies that such effects are transitory and, therefore, that the only way to
achieve permanent effects is to adopt permanent policies. By contrast, the traditional
stationary/non-stationary dichotomy would suggest that the effects of transitory
policies are either short-lived (stationary case) or permanent (non-stationary case).
This more rigid approach is bound to lead to misleading policy implications by either
identifying short lived effects where the effects may actually be long lasting or by

identifying as permanent, effects that may actually be mean reverting.



Despite its widespread use in the general economics literature®, only recently has the
presence of long range dependence been tested in the energy literature [see for
example, Elder and Serletis (2008), Gil-Alana et al. (2010), Apergis and Tsoumas (2011
and 2012), Barros et al. (2012a and 2002b), and Belbute and Pereira (2015a and
2015b]]. The results from these fractional integration tests generally confirm that
energy variables are stationary but exhibit long term memory, with the resulting

implications for policy suggested above.

The energy literature on long memory properties has focused almost invariably on
total energy consumption and on the case of the United States. The absence of
evidence on the degree of long range dependence in other advanced countries and on
the relative levels of persistence among different forms of final energy demand is an
important void in the literature. This is a void that we intend to start filling with this
paper by concentrating on the case of final energy demand in Portugal and by

considering not only final energy demand but also its major components.

Indeed, in this paper we measure the degree of fractional integration in final energy
demand in Portugal considering both aggregate final energy demand and its four main
components — petroleum and its derivatives, electricity, coal, and natural gas. We use
an autoregressive moving average fractionally integrated, ARFIMA, model approach.
An ARFIMA model is a generalization of the ARIMA model which frees it from the
stationary versus non-stationary dichotomy. We consider monthly data starting in
early 1985 and use both the original data and its seasonally adjusted version to test for

fractional integration.

This paper is not the first looking into the general issue of persistence in energy
demand in Portugal. A previous, albeit tentative, analysis can be found in Belbute and
Pereira (2014). There, the issue is approached in very general terms using annual
energy consumption data and a non-parametric approach. The present paper brings

much greater focus and clarity to the issue both in scope and in approach and,

! See, for example, Diebold and Rudebush (1989), Lo (1991), Backus and Zin (1993); Cheung (1993), Willinger, Tagqu and
Teverovsky (1999), Gil-Alana (2002), Dijk, Hans, and Paap (2002), Caporale and Gil-Alana (2004), Sinclair (2005), Yoon, G (2009),
Gil-Alana (2010), Aloy, Boutahar, Gente and Feissolle (2011), Bos, C. S. Koopman and M. Ooms (2014), for applications in the area
of GDP, unemployment, inflation, exchange rates, and stock market prices.



therefore, to the meaning and precision of the findings. It does so, first, by using a
much expanded monthly data set which allows for a deeper, more nuanced and more
robust analysis. Second, it uses a fractional integration approach, which by its very
nature, allows for a clear identification of the type of memory that characterizes the
different types of energy demand going well beyond the traditional stationary/non-

stationary dichotomy.

The paper is organized as follows. Section 2 presents the data set. Section 3 provides a
brief technical description. Section 4 discusses the empirical evidence. Finally, section

5 provides a summary of the results and discusses their policy implications.

2. Data: Sources and Description

This work uses monthly data for gross inland energy consumption (GIEC, hereafter).
According to the Eurostat, GIEC is the total energy demand and it represents the
quantity of energy necessary to satisfy consumption of the geographical entity under
consideration. It covers four components; a) consumption by the energy sector itself;
b) distribution and transformation losses; c) final energy consumption by end users
and d) “statistical differences" (not already captured in the figures on primary energy
consumption and final energy consumption). Eurostat computes GIEC as the sum of
primary production, recovered products, net imports and variations of stocks, minus
bunkers. Moreover, consumption by the energy sector includes the energy
consumption by the sector itself in refineries, in electric power plants, transport losses

and the consumption with hydroelectric pumping.

All data comes from the Eurostat’s web site which, in turn, are based on data from the
Portuguese Department of Energy. They clearly reflect the distinction between primary
and final energy demand. Primary energy is defined as the energy found in nature that
has not been subjected to any conversion or transformation process but it is used to

produce other forms of energy.

GIEC for Portugal includes four energy components: petroleum and its derivatives,
electricity, natural gas and coal. GIEC data for Portugal covers the period from
February 1985 until December 2011 (which corresponds to 232 observations). In the

case of natural gas, the starting date is February 1997 (which corresponds to 179
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observations), the date when the necessary distribution infrastructure was completed
thereby allowing natural gas to become an important component of the Portuguese
energy system. All variables are expressed in 10 tons of oil equivalent (ktoe
hereafter), and were converted into natural logarithms for the empirical analysis. The

original data are not seasonally adjusted. See Table 1 for details.

Final demand of petroleum and derivatives includes crude oil and all derivatives that
are used exclusively as a primary energy source such as diesel, fuel oil, gasoline,
liquefied petroleum gas, naphtha, kerosene, and petroleum coke. Petroleum and its
derivatives used as raw materials in the production of, for example, lubricants, of
asphalt, paraffin, solvents and propylene are not considered in our data. Petroleum
and its derivatives account for 66.0% of total energy demand in Portugal, although this
share showed a declining trend over the sample period. In 2011 the final demand of

petroleum and derivatives represented 53.7% of total energy demand.

Final demand for electricity does not distinguish among production technologies or the
raw material used in electricity generation, with the exception of co-generation (that
is, combined heat and power stations) and heat (that is, electricity produced by plants
which are designed to produce heat only), which are accounted for separately by
Eurostat. It represents 13.0% of total final energy demand for the entire sample period
but has increased consistently in the last part of the sample period. In 2011 the final

demand for electricity represented 15.6% of total energy demand.

Final demand for coal includes domestic production and imports of hard coal,
anthracite and coke coal. It constitutes 14.1% of total final energy demand for the
sample period but with a decreasing trend over the last part of the sample period. It

represented 10.2% of total energy demand in 2011.

Final demand for natural gas consists of the imports of both natural gas transported by
pipeline and liquefied natural gas shipped by vessels. In 1997 the country began an
important program devoted to the development of a natural gas distribution
infrastructure which rapidly stimulated its consumption. After its introduction, the
consumption of natural gas grew very rapidly. Its share of final energy demand was

just 2.8% in 1998 and reached 20.5% in 2011. The average over the sample period was



Table 1 — Aggregate Inland Energy Consumption in Portugal

Aggregate Inland Shares
Energy
m(;zr::;:‘;lt:::ée Petroleum | Electricity Coal Gas
(ktoe) (%) (%) (%) (%)
1985 6.810 0.744 0.142 0.114 -
1986 6.864 0.747 0.147 0.106 -
1987 6.947 0.736 0.134 0.131 -
1988 7.033 0.711 0.137 0.151 -
1989 7.223 0.723 0.127 0.149 -
1990 7.251 0.701 0.137 0.163 -
1991 7.257 0.709 0.142 0.149 -
1992 7.360 0.712 0.126 0.161 -
1993 7.333 0.693 0.132 0.175 -
1994 7.329 0.703 0.125 0.172 -
1995 7.414 0.701 0.119 0.179 -
1996 7.355 0.699 0.132 0.169 -
1997 7.417 0.704 0.119 0.173 0.004
1998 7.512 0.712 0.123 0.138 0.028
1999 7.635 0.649 0.120 0.154 0.078
2000 7.622 0.634 0.124 0.157 0.086
2001 7.625 0.650 0.132 0.126 0.091
2002 7.651 0.653 0.123 0.117 0.108
2003 7.633 0.621 0.126 0.147 0.106
2004 7.650 0.618 0.118 0.133 0.131
2005 7.718 0.595 0.111 0.154 0.139
2006 7.629 0.580 0.124 0.149 0.146
2007 7.592 0.603 0.119 0.119 0.159
2008 7.538 0.593 0.115 0.110 0.183
2009 7.533 0.546 0.141 0.126 0.187
2010 7.527 0.569 0.159 0.073 0.199
2011 7.498 0.537 0.156 0.102 0.205
Sample Descriptive Statistics

" 7.408 0.660 0.130 0.141 0.069

o 0.015 0.004 0.001 0.002 0.004
o/p 0.20% 0.59% 0.88% 1.68% 3.53%

Note: ustands for the mean, g, stand for the standard deviation of the mean and UM/,ustands for the
coefficient of variation.

just 6.9% which naturally reflects its total absence in the final energy mix prior to 1997.

Overall, over the sample period, we observe a declining trend in the final demand

for petroleum and its derivatives and coal while the opposite is true for electricity and



natural gas. Yet, petroleum and its derivatives continue to account for more than half

of the final demand for energy.

3. Fractional Integration
3.1 Fractionally integrated processes

A fractionally integrated process is a stochastic process whose degree of integration is
a fractional number and whose autocorrelation function exhibits persistence which is
neither an 1(0) nor an I(1) process. Nevertheless, persistence is consistent with a
stationary process where the autocorrelations decay hyperbolically. Because the
autocorrelations die out slowly, the fractionally integrated processes display long-run,
rather than short-term dependence, and for that reason are also known as long-
memory processes [See, for example, Granger and Joyeux (1980), Granger (1980,

1981), Sowell (1992a, 1992b), Baillie (1996) and Palma (2007).

A time series x; =y, — fz, - where [ is the coefficients vector, z, represents all
deterministic factors of the process y, and t = 1,2,...n - is said to be fractionally

integrated of order d if it can be represented by

(1 - L)dxt = ut, t = 1, 2, 3, (1)
where, L is the lag operator, d is a real number that captures the long-run effect and
u, is 1(0).
Through binomial expansion, the filter (1 — L)%provides an infinite-order L polynomial
with slowly and monotonically declining weights,

[ee)

(1-L)4¢ = Z (f) (-1 =1-dL+

j=0

dd—1) . d(d—-1)(d-2)
TR 3 L

(2)
and thus (1) can be written as:

d(d—1) d(d —1)(d - 2)
7 M2t 31

Xe =dxp_q — Xe_g + U (3)

If d is an integer, then x; is a function of a finite number of past observations. In

particular, if d = 1, then x; is a unit root non-stationary process and, therefore, the



effect of a random shock is exactly permanent. If d = 0, then x; = u; and the time
series is 1(0), weakly auto-correlated (or dependent) with auto-covariances decaying

exponentially. More formally,
Y =ay’, for j=1,2,... and |ay| <1 (4)

Allowing dto be a real number provides a richer degree of flexibility in the
specification of the dynamic nature of the series, and depending on the value of the
parameter d we can determine different levels of intertemporal dependency. In fact,
when d is a non-integer number, each x; depends on its past values far away back in

time. Moreover, the auto-covariance function satisfies the following property

Y =~ cyj?il, for j=1,2,... and 0<|¢| <o ()

where “= " means that the ratio between the two sides of (5) will tend to unity as
Jj — oo. Assuming that the process x; has a spectral distribution such that the density

function f(4) is given by,

2

a2\ |o (e—il)
D =(—) ——Z| 201 = cos(V)]~ (6)
then for low frequencies as 1 — 0% we get
f) = c;a72? (7)
2 2
Where ¢, = (a—) ) > 0 and “= " means that the ratio between the two sides of
2n/ [¢p(1)

(7) will tend to unityas A - 0%,

In general, larger values for the fractional-difference parameter, d, indicate a greater
degree of persistence. Specifically, if —0.5 < d < 0, the autocorrelation function
decays at a slower hyperbolic rate but the process can be called anti-persistent, or,
alternatively, to have rebounding behavior or negative correlation. If 0 < d < 0.5, the
process reverts to its mean but the auto-covariance function decreases slowly as a
result of the strong dependence on past values. Nevertheless, the effects will last

longer than in the pure stationary case (d = 0). If 0.5 < d < 1, the process is non-



stationary with a time-dependent variance, but the series retains its mean-reverting
property. Finally, if d = 1, the process is non-stationary and non-mean-reverting, i.e.

the effects of random shocks are permanent.

3.2  ARFIMA processes

An auto-regressive fractionally integrated moving average process, ARFIMA, is an
extension of the traditional ARIMA model allowing for fractional degrees of
integration. The autocorrelations of the ARFIMA process decay in a slower rate than
the exponential rate associated with the ARMA process and, generally, with short
memory processes. ARFIMA models were first introduced by Granger and Joyeux
(1980) and Granger (1980, 1981) to solve problems to unit roots tests caused by either
variable aggregation, and more recently, by the duration of shocks [see, for example,

Sowell (1992a, 1992b), Baillie (1996) and Palma (2007), for reviews of this literature].

A process like (1) is called fractionally integrated of order d if d is a non-integer. If, in

addition, u; in (1) is an ARMA(p, q), then x; is an ARFIMA process becomes,
dL)(A = L)%x, = 6(L)e, (8)

where ¢ (L) and 0(L) are the polynomials of order p and g respectivelly, with all
zeroes of ¢(L) and 6(L) given, respectively, by

¢(L) =1— 1L — L2 — ... —¢,LlP =0 (9)
O(L) =1+4+6,L+6,L*+ .. +6,L7=0 (10)

lying outside the unit circle, and e; is white noise. Clearly, the process is stationary and

invertible for —0.5 < d < 0.5.

The estimation of the parameters of the ARFIMA model is done by the method of
maximum likelihood. The log Gaussian likelihood was established by Sowell (1992b)

and is

1 - N —~
(M) = —E{Tlog(Zn) +1log|V| + (y — XB) Vi(y —Xﬂ)} (11)

The covariance matrix Vhas a Toeplitz structure:



Yo V1 Y2 o ¥Yr-1

V1 Yo V1 - ¥Yr-2
V=|7 V1 Yo - VYr-3 (12)
|—VT—1 Yr—2 Yr-3 -~ Yo J

where, yo = Var(y,) andy; = Cov(y;,y;-1) forj= 1,2,... t —landt =1,2,.. T.
3.3  Aseasonal long-memory process

A seasonal white noise parametric long-memory process has been proposed by Porter-

Hudak (1990) who considers a simple seasonally fractionally differenced process as
(1 - Ls)dxt = ut, t = 1, 2, 3, (13)

where, s is the seasonal period and LSx; = x;_;. As with (2), the process also will have

an infinite-order L’ polynomial with slowly and monotonically declining weights,

[o9]

dd=1) ,, _dd-1)(d-2)

d o
—_785)d = —1)si=1— 35 4 ...
1-19 Z(}.)( DL =1 —dL +=— . 354 (14)
Jj=0
A more general seasonal ARFIMA model, can be written as
dL)(A = L5)%sx, = O(L)e; (15)

The spectrum of the seasonal ARFIMA model is given by Porter-Hudak (1990) and Ray

fo) = (;—n)

The spectrum is unbounded at frequencies /1]- = %, forj=0,1,2,.. s/2, so that

(1993) as

2

—ia
6 (™) [2(1 — cos(sA)] 724 (16)

¢ (e7H)

the model contains a persistent trend and a (s/2) persistent cyclical component. Hence
the seasonal ARFIMA process shows a behavior at seasonal frequencies similar to that

of the ARFIMA process at zero frequency (6).

In particular, we will use the twelfth seasonal difference (S12y; = y; — Yi_12 =
(1 — L*?)y, of the natural logs of the series (y, = In(x;)) and the seasonal ARFIMA

model can be written as

d(L)(A — L)%y, = 6(L)e, (17)
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Accordingly, seasonality has long memory when 0 < d; < 0.5 and the short-run
dynamics are described through the estimation of the p parameter of the usual non-

seasonal AR (p) part of (17).

4, The Empirical Results

In this section, we present the main empirical results. The bulk of this section deals
with the estimation of different ARFIMA(p, d, q) models using natural logarithms of
the raw data. We consider three empirical approaches, first using the raw data in logs
without any modifications' second, using the raw data in logs but with seasonality

filtered out; and third, with the data corrected for seasonality.

As a starting point of reference and for the sake of highlighting the insights brought
forth by the fractional integration approach, we begin by considering the results from
the standard unit roots tests, i.e., the tests that only consider the dichotomy between
stationarity and non-stationarity. The results are traditionally interpreted as suggesting
that the effects of one-time shocks to the series are either transitory, if the series is

stationary, or permanent if the series is not stationary.
4.1 The Traditional Approach: Standard Unit Roots Tests

We use the Augmented Dickey-Fuller (ADF) t-test to test the null hypothesis of a unit
root in aggregate energy consumption and its components in log differences. The
optimal lag structure is chosen using the Schwartz Bayesian Information Criterion (BIC)
as the model selection criteria, and the deterministic component (DET hereafter) were

included if statistically significant.

The test results are presented in Table 2 and suggest that all series under
consideration are non-stationary in log-levels but stationary in first log-differences,
that is, they are I(1). Based on these test results we can conclude that one-time shocks
to all of these series have permanent effects on the levels of the different variables.
This means that the one-off policy shocks have permanent effects and that
maintaining a steady policy stance is not critical, since even one-time shocks will lead

to permanent effects. In addition, there is nothing we can say based on these results

11



Table 2 - Traditional unit root results for energy consumption

Variables DET lag t p-value BIC

In log-levels
Aggregate energy consumption Constantand trend 1 0.625 0.851 -614.931
Oil Constant 2 0.218 0.750 -605.98
Coal Constant 2 -0.108 0.646 311.39
Gas Constant and trend 5 0.270 0.765 -85.6854
Electricity Constant and trend 4 0.702 0.867 -550.573

In log-differences

Aggregate energy consumption None 1 -17.714 0.000 *** -620.305
oil None 1 -19.179 0.000 *¥*k* o -611.701
Coal None 5 -11.621 0.000 *Ex - 286.262
Gas None 4 -8.027 0.000 *** -90.763

Electricity None 6 -10.046 0.000 *** -606.782

on the relative degree of persistence of the different components of energy

consumption.

It is also interesting to note that these results coincide with the directly-related
literature on stationarity/non-stationarity in energy consumption to confirm the
presence of unit roots. Furthermore, even the evidence using a fractional integration
approach suggests that unit roots are prevalent [see, among others Gil-Alana et all

(2012) and 2010), Apergis and Tsoumas (2011) or Lean and Smyth (2009)].
4.2 Fractional integration without seasonal adjustments

In all cases that follow, the optimal ARFIMA structure was chosen using the Schwartz
Bayesian Information Criterion (BIC) as the model selection criteria. We present the
estimation results of the auto-regressive and moving average components that
correspond to the optimal specification?, as well as of the estimated fractional
integration parameter d. For each estimated parameter we present the corresponding

standard errors, p-values and 95% confidence intervals.

Results for the fractional integration analysis without any consideration of seasonality
are presented in Table 3. These results suggest that there is statistically significant
evidence for the non-rejection of the presence of long memory in aggregate energy

demand as well as in its four components.

? Only the parameters corresponding to the optimal ARMA structure are reported. Specifically, if the optimal structure is
AR(12) or MA(12) all coefficients will be reported. If, however, only the 12" order coefficients are significant, then only these
coefficients are reported.

12



Table 3 — Fractional integration results without seasonal adjustments

AR() FI() MA()
Constant
» P a a 9
7.1348 12 0.9524 0.4913 12 -0.7852
Aggregate Standard error 1.5475 0.0237 0.0117 0.0527
energy p-value 0.000 0.000 0.000 0.000
consumption |Conf. Interval (95%) [4,1017; 10,1679] [0,9059 ; 0,9988] 10,4685 ; 0,5141] [-0,8884 ; -0,6819]
BIC -638.975
6.8700 12 0.3107 0.4875 0
Standard error 0.4436 0.05916 0.016
Petroleum and
derivatives |P7V2lue 0.000 0.000 0.000
Conf. Interval (95%) [6,0005 ; 7,7395] [0,19448 ; 0,4267] [0,4562 ; 0,5187]
BIC -600.474
5.328 12 0.2744 0.4803 0
Standard error 0.3464 0.0634 0.0256
Electricity  |p-value 0.000 0.000 0.000
Conf. Interval (95%) [4,6491 ; 6,0069] [0,1502 ; 0,3986] [0,4301 ; 0,5305]
BIC -560.339
5.049 12 0.8674 0.4233 12 -0.7155
Standard error 0.7616 0.092 0.0428 0.1323
Coal p-value 0.000 0.000 0.000 0.000
Conf. Interval (95%) [3,5560; 6,5415] [0,6870; 1,0478] [0,3393; 0,5073] [-0,9749 ; -0,4562]
BIC 296.287
1 0.7598 0.2814
Standard error 0.1137 0.0956
p-value 0.000 0.003
Conf. Interval (95%) [0,5369 ; 0,9827) [0,0942 ; 0,4686)
Gas 3 0.2255
Standard error 0.1083
p-value 0.037
Conf. Interval (95%) [0,0132; 0,4379]
BIC 130.148

Note: p stands for the estimated value of the parameter associated withx;_,of the AR component and
@stands for the estimated value of the stochastic term of order g (et—q) of the MA component.

All the estimates of the fractional parameter d are in the range (0, 1) thus allowing us
to reject both the pure stationary case (d = 0) and the unit root model (d = 1). More
specifically, all estimated parameters d are statistically significant at the 5% level test
and lie within the interval (0, 0.5). Petroleum and electricity show the highest degrees
of persistence (d = 0.4875 and d = 0.4803) closely followed by coal (d = 0.4233). For
the case of final demand for gas, the value of the fractional integration parameter
(d = 0.2814) is lower than for the other final energy demand variables, suggesting a
weaker intensity of persistence for this component, though stronger than the pure

stationary case.

Overall, these results mean that the effects of a random shock in the innovations of
these series are transitory as the series are mean reverting. Such effects, however, will
last longer than in the pure stationary case. These series, therefore, exhibit long-

memory behavior.

The confidence intervals for the estimated fractional integration parameters are

sometimes wide but always in the positive range. Also, with the exception of natural
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gas, the upper bounds are slightly greater than 0.5 leaving open the possibility that

these series may be non-stationary, though mean-reverting.

Finally, it should be noted that all of the AR coefficient estimates are large and
statistically significant, suggesting a strong influence of this short-term component. For
coal the upper limit of the confidence interval is greater than one while for aggregate
energy demand it is only marginally lower than one. This suggests that non-stationarity

cannot be completely ruled out for these series.?
4.3 Fractional integration results with seasonally filtered data: the X12 procedure

Monthly data are often affected by seasonality effects, inertial factors related to the
calendar. Seasonal effects are particularly clear in the autocorrelation and the partial
autocorrelation functions for the final demand for electricity, gas and coal (see

Appendix).

To address this issue, we use the seasonal adjustment methodology X-12 ARIMA,
adopted by the U.S. Census Bureau [2011]. This strategy removes the seasonal effect
to get a smoother time series for each final energy demand. We then estimated the
ARFIMA model with the new seasonally adjusted data. Estimation results are

presented in Table 4.

We find, that for all of the seasonally adjusted variables, the estimated fractional
integration parameters are again statistically significant and within the interval (0, 0.5).
Petroleum and its derivatives (d = 0.4956) and electricity (d = 0.4856) show the
highest degrees of persistence closely followed by coal (d = 0.4449). Natural gas, in

turn, shows a clearly lower level of persistence (d = 0.1508).

The confidence intervals for the fractional integration parameter at the aggregate final
energy demand level and for petroleum and derivatives are very narrow while for
natural gas it is relatively large. In all cases the lower bound of the confidence interval
is positive. For electricity and coal, and more marginally for petroleum and its

derivatives, the upper limits of the fractional-difference parameters are greater than

* It should be mentioned that in the ARFIMA framework, the short-run behavior of the series can be captured by the ARMA
parameters while the long-run behavior can be modeled by the fractional differencing coefficient. Furthermore, the properties of
the fractional integration parameter do not depend on the correct specification of the AR or MA terms. [Sowell (1992a and b) and
Palma (2007)].
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Table 4 - Fractional integration results with seasonality-filtered data: X12 procedure

AR() FI() MA()
Constant
P d q ]
7.043 0.9851 0.4157 1 -0.922
Standard error 0.8998 0.03991 0.00042 0.0268
p-value 0.000 0.000 0.000 0.000
Aggregate  |Conf. Interval (95%) [5,2795 ; 8,8065] [0,9083 ; 1,0619] [0,4149 ; 0,4165] [-0,9745 ; -0,8695]
energy 0.0092
consumption Standard error 0.0382
p-value 0.809
Conf. Interval (95%) [-0,0657 ; 0,0842]
BIC -718.068
6.8924 0.4956
P . d Standard error 0.4904 0.0061
Pl N oou oo
Conf. Interval (95%) [5,9314; 7,8536] [0,4836 ; 0,5075]
BIC -664.309
5.3187 0.332 0.4856
Standard error 0.3618 0.0604 0.0212
p-value 0.000 0.000 0.000
Conf. Interval (95%) [4,5097; 6,0278] [0,2137; 0,4529] [0,4441 ; 0,5271]
Electricity 0.1659
Standard error 0.0546
p-value 0.000
Conf. Interval (95%) [0,2137; 0,4503]
BIC -880.623
5.2126 0.4449
Standard error 0.4481 0.0348
Coal p-value 0.000 0.000
Conf. Interval (95%) [4,3343 ; 6,0910] [0,3767 ; 0,5131]
BIC 249.739
0.9922 0.1508
Standard error 0.0078 0.0626
Gas p-value 0.000 0.018
Conf. Interval (95%) [0,9770; 1,0075] [0,028 ; 0,2734]
BIC 104.480

0.5 suggesting that the series may be non-stationary, though mean reverting.

The first order short-run seasonal AR coefficient estimates are all statically
significant for a 5% test indicating that adjacent intertemporal dependence is also
present. For the aggregate energy and more marginally for gas the upper limit of the
confidence interval is greater the one, suggesting that non-stationarity cannot be

completely ruled out for these two series.*
4.4 Fractional integration with seasonality-adjusted data: the S12 procedure

To directly account for seasonality, for each final energy demand component, we

model the twelfth seasonal difference (S12y; = y; — V12 = (1 — L*?)y,) of the

* Refer again to the previous footnote.
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Table 5 - Fractional integration with seasonality-adjusted data: the S12 procedure

AR() FI() MA()
p d q ?
0.1245 0.3345
Aggregate  |Standard error 0.312 0.1062
energy p-value 0.343 0.002
consumption
Conf. Interval (95%) [-0.1326 ; 0.3816] [0.1264 ; 0.5426]
BIC -510.507
0.1589 0.3647 5 0.1587
Standard error 0.5945 0.0487 0.0667
Petroleum and 0.007 0.000 0.017
derivatives  |P-value ’ i ’
Conf. Interval (95%) [0.04430 ; 0.2734] [0.2692 ; 0.4602] [0,0279 ; 0,2895]
BIC -482.315
0.3413 0.3208 1 0.7397
Standard error 0.134 0.1105 0.1139
Electricity [, value 0.011 0.004 0.000
Conf. Interval (95%) [0.0795 ; 0.6031] [0.1041 ; 0.5375] [0,5164 ; 0,9631]
BIC -658.8158
0.4062 12 -0.7765
Standard error 0.0448 0.0608
Coal p-value 0.000 0.000
Conf. Interval (95%) [0.3184 ; 0.4941] [-0,8957 ; -0,6574
BIC 292.881
0.6316 0.3787
Standard error 0.1317 0.1098
Gas p-value 0.000 0.001
Conf. Interval (95%) [0,3735 ; 0,8897] [0,1634 ; 0,5939]
BIC 144.966

natural logarithm of the series and then (re)estimate the ARFIMA model.”> Accordingly,
seasonality is long memory when 0 < d; < 0.50 and the short run dynamic is
described through the estimation of the AR p coefficient. Results are presented in

Table 5.

All the “d,” fractional integration parameters range from 0.3345 to 0.4062 thereby
rejecting both the pure seasonal stationary case and the seasonal unit root model.
With the exception of coal, the confidence intervals are wide. For aggregate final
energy consumption, electricity and gas, the upper limits of the fractional-difference
parameters are greater than 0.5 suggesting that the series may be non-stationary,

though mean reverting.

® A more general approach to seasonality would allow for fractional integration parameters to be different at different
seasonal frequencies. See, for example, Hassler (1994) and Robinson (1994). In our case, we would like to argue that the S12 is
a perfectly adequate approach. First, there is a clear monthly pattern that repeats itself annually. Second, the argument has
been made that for reasons of parsimony the consideration of only one cycle of seasonality is preferable. See, for example,
Ferrara and Guégan (2006).
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The short-run seasonal AR coefficient estimates are, in general, statistically significant
for a 5% test indicating that adjacent intertemporal dependence is also present in final
energy consumption. For aggregate final energy consumption the null (that is p = 0)

could not be rejected, suggesting that seasonal short memory is not present.

5. Conclusions and Policy Implications

Our empirical findings suggest that the presence of long memory cannot be rejected
for either aggregate final energy demand or for each of its four components —
petroleum and its derivatives, electricity, coal, and natural gas. In addition, when we
consider the issue of seasonality directly, our findings also indicate annual homologous

seasonal long memory for all the components of final energy consumption.®

More specifically, all of the estimated fractional-integration parameters are positive
and lower than 0.5. We can, therefore, reject both the pure stationary case (d = 0)
and the unit root case (d = 1). All variables are stationary and mean reverting but with
the autocorrelations decaying at a hyperbolic rate, that is, they exhibit long-term
memory. Accordingly, despite the fact that the effects of temporary shocks tend to
disappear only slowly, they preserve a temporary nature. In this sense, our results are in
line with the evidence in the recent literature for the United States [see, for example,
Lean and Smyth (2009), Gil-Alana, et al. (2010), Apergis and Tsoumas (2011, 2012) and
Barros et al. (2012a and 2012b)].

To frame these results we also use the conventional approach of testing for the
dichotomy between stationarity and non-stationarity. In this framework we would
invariably conclude in favor of non-stationarity. Therefore, we would conclude that
even transitory policy shocks would have permanent effects. Our fractional integration
analysis highlights that this is not the case. The effects of transitory shocks are

temporary, although long lasting.’

Understanding nature of persistence in the final energy consumption is a crucial issue

as Portugal embarks work on the implementation of important environmental fiscal

® This finding highlights the importance of using monthly data and thereby one way in which this paper goes well beyond Belbute
and Pereira (2014).
” This is another area in which this paper departs fundamentally from Belbute and Pereira (2014)]
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reforms aligned with both the EU strategy and UN green economy guidelines [see, for

example, APA (2012) and CRFV (2014)].

Our findings on the long memory nature of final energy demand in Portugal have
important implications for the design and the effectiveness of its energy and
environmental policies. Persistence reflects strong habit formation mechanisms or
technological rigidities. When final energy consumption is a pure stationary process,
that is, a short memory process, then after a policy shock it will tend to move away
from and revert to its trend more quickly than in presence of long memory, that is, a

strong dependence on its past values.

Given the existence of long memory in energy consumption, positive policy shocks in
the form, for example, of energy efficiency programs, subsidies for alternative
renewable energy sources, or incentives for sustainable electrical mobility, are likely to
be more effective because they tend to move energy consumption away from and
revert to its predetermined target over a long period of time. This is the good news.
The adoption of these programs has the potential to generate effects on energy

demand patterns that go beyond the duration of the program.

But there is also bad news. Despite the fact that the effects of any active policy on
energy consumption tend to disappear slowly, they preserve, however, their
temporary nature. Permanent effects on final energy consumption will require a more
permanent policy stance. Simply put, adopting programs only to ignore them or
reverse them soon thereafter will not leave a permanent effect on demand patterns.

Permanent results require permanent programs.

While it is not in the nature of this approach to make prescriptions about the
adoption of any specific policy, our results are very informative in terms of what to
expect from any existing or potential policy. On one hand, policies that are designed
as temporary or end up being suspended cannot be expected to leave permanent
effects. A case in point are the policies for 'green mobility' that pointed to the
installation of charging stations for electric and hybrid vehicles and which was in the
meantime abandoned without leaving any visible change in energy demand

patterns. The same can be said about feed-in tariffs for photovoltaic generation,
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which had an important effect initially with generous rates but whose effects seem

to have now petered out has their generosity has been severely curtailed.

On the other hand, policies that are either permanent or perceived as such will tend
to generate strong and permanent effects. To illustrate this case we could consider
the recently introduced carbon tax, which is designed as a permanent policy, and
which as such has the potential for leading to substantive and permanent changes.
Similarly, the long-lived feed in tariff programs for wind energy have left a clear and

permanent mark in the sector.

Finally, these results have important implication from a more technical perspective.
They suggest the importance of accounting for the energy-economy interactions both
in terms of modeling and energy forecasting as shocks in energy demand exhibit long
memory and will tend to reverberate throughout the economy. Natural gas seems to

be less of an issue in this context given its relatively lower levels of persistence.

Although these are important implications in the Portuguese context, though they are
far from parochial. In fact, understanding persistence in final energy consumption is
imperative, for example, in the European Union. At the core of the renewed policy
focus in the EU is the idea that public policy for a green economy should extend well

Ill

beyond the usual “getting prices right” in order to shift consumption and production
patterns to a more sustainable path of greenhouse gas emissions and reduced energy

dependency [see, for example, EC (2011, 2013, 2014a, 2014b].
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APPENDIX

Auto-correlation and partial auto-correlation functions

(log-levels)
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A.4 Coal
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