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ORGAN TRANSPLANTS, HIRING COMMITTEES, AND

EARLY ROUNDS OF THE KAPPELL PIANO COMPETITION

1.   Introduction

There is an important family of problems for which a group must choose a fixed number of alternatives,

as a function of the preferences of the individual group members.  For instance:

! A university department has two vacant positions, and the choice will be made from the

set of candidates as a function of the preferences of the members of the hiring

committee.  The department cannot put a job opening in the bank for another year.

! Exactly k organs are available for transplant, and a hospital committee has to decide

which of the many waiting recipients will have transplant surgery.

! A funding agency will choose k research grant recipients from a large applicant pool.

Of course, there are also two-stage collective decision problems for which k alternatives are selected in

the first round, and then in round two a final selection, of a single alternative, is made from these k. 

Because strategic considerations often guide preference revelation in the first round, the analysis of a

social choice function that selects exactly k alternatives may inform the design of the overall procedure.

! A panel of judges selects k contestants to advance to the next round of a piano

competition.  (See Horowitz, 1990.)

! The American Psychological Association selects a president by using the single

transferrable vote procedure to narrow the set of candidates to five.  The final selection is

made from these five.

 An alternative treatment would allow k to depend on the reported preferences, as when a

selection committee allocates a given amount of money to scholars submitting research grant

applications.  This covers a different set of applications than the assumption that k is fixed in advance,

the case that we investigate in this paper. 

In the case of the transplant example, it would be wrong to assume that a physician on the

selection committee has as her goal the maximization of selfish individual utility.  But even when the
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dominant motivation is concern for the welfare of others, and when physicians wish to select a set of

transplant recipients according to what is just and fair, there is scope for manipulation.  Each jury

member wants her own view to prevail.  Because there is more than one dimension that can enter a

fairness evaluation   — the age of the applicant, the urgency of the need for a new organ, and the degree

to which the applicant's family is depending on him, etc.  —  the committee members will have different

rankings of the applicants in terms of fairness and justice.  Moreover, there will be a domain of

conceivable rankings, each of which is plausible.  If a member of the selection committee feels strongly

about the virtue of her own ranking then she might well report the ranking that precipitates the selection

of the set of transplant recipients that better reflects her true preferences than truthful revelation.  If that

happens the outcome will be less than ideal, assuming that g is designed to employ community norms and

standards to select an outcome as a function of the reported preferences.

We are concerned about strategic misrepresentation of preference, regardless of the degree to

which an individual’s preference reflects selfish considerations as opposed to a concern for the welfare

of others.  The temptation to manipulate may be stronger when the decision maker is reporting

preferences for outcomes that more directly concern his own welfare.  However, even when the benefit to

a committee member from obtaining an outcome that ranks higher in his personal ordering of alternatives

is indirect, as in the case of the transplant example, we may need assurance of the absence of even an

indirect benefit from manipulation when the process results in outcomes that have such enormous effects

on the welfare of those concerned.  This is obvious in the case of transplant recipients.  In the case of a

panel of judges choosing the best pianists, the effect on career earnings can be immense.  (See Frank and

Cook, 1995).

If exactly two alternatives must be chosen, then we will show that the only rules that never give

an individual the incentive to manipulate will ignore the preferences of all but one individual.  In fact, the

top two alternatives in the preference ordering reported by that individual will be the two alternatives

selected by the rule.  For our results for arbitrary k we assume that the social choice function in question

has a unanimity property.  We have been unable to prove that only one person’s preferences can

influence the selection without assuming unanimity, a property that can be derived from strategy-

proofness when only one alternative will be chosen.  Nor have we been able to show that our result

doesn’t hold without some such property.  We do prove that if k alternatives are to be selected and no

coalition can ever profit by deviating from truthful revelation then the rule must identify one individual

and choose the k highest ranked alternatives in that individual's preference ordering.  In addition to

assuming that the final choice set contains exactly k alternatives, we also require every subset containing
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exactly k alternatives to be chosen at some profile.

To discuss manipulability and strategy-proofness we must know when an individual would

submit a false order to obtain a different chosen set.  This means that we have to know how individuals

order k-element sets as a function of their preferences on single alternatives.  Because we are modeling

the selection of exactly k alternatives from X, we could use the individual preferences over the family Xk

of k-element subsets of X as the set of primitive individual preference relations.  Then the rule g selects a

single member g(p) of  Xk as a function of the profile p of reported individual preferences over Xk. 

However, we cannot apply the theorem of Gibbard (1973) and Satterthwaite (1975) because we do not

assume that any complete and transitive ordering of Xk is admissible.  If k = 2 and X has, say, 101

alternatives then an ordering for which the top 50 pairs contain alternative x and the bottom 50 pairs also

contain x might be bizarre for some interpretations of our model.  Similarly, it may not be necessary to

have a social choice rule that works when someone ranks {x, y} at the top, {x, z} second, and {y, z} last

if a priori information tells us that an individual would never have such a preference scheme.  Moreover,

although the proofs of "impossibility theorems" often only use a fraction of the full domain, there appears

to be no ready conversion of an existing proof of Gibbard-Satterthwaite to our problem.  

There is another compelling reason to reject the supposition that individuals will be expected to

submit a complete ranking of all of the k-element subsets of X.  It is implausible that individuals will be

asked to submit enough information to allow, say the almost four million four-element subsets of a set X

with 101 members to be completely ordered.  It is much more reasonable to ask someone to order the

members of X.  Therefore, the primitive individual ordering is the one on the set X from which the k-

element subsets are drawn.  Accordingly, we restrict the individual preferences on Xk by assuming that

each individual has an extension principle that extends her ordering on X to an ordering on Xk.  The

extension principle gives us a systematic way of thinking about the appropriate restrictions on individual

preferences over subsets of X.

Pattanaik (1973, 1974), Gärdenfors (1976), Kelly (1977), and Barberà (1977) began the

investigation of strategy-proofness of non-resolute social choice rules.  Baigent (1998), Duggan and

Schwartz (2000), Barberà, Dutta, Sen (2001), Ching and Zhou (2002), and Campbell and Kelly (2000,

2002) have resumed the inquiry.  Each paper employs a different assumption about the way that

individual preference over sets is generated from the primitive individual preference over alternatives,

but all of them assume that every profile of linear orderings of the singleton alternatives in X is

admissible.  The result in each case is essentially an impossibility theorem.  Even though g(p) contains
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more than one alternative, Ching and Zhou (2002), Barberà, Dutta, and Sen (2001), and Duggan and

Schwartz (2000) assume that a single alternative will eventually be chosen from g(p) by some random

process.  Therefore, they ground their extension principles in expected utility.  

This paper is concerned with situations in which exactly k alternatives will ultimately be

selected.  Campbell and Kelly (2002) address this question (among others), but without assuming that the

rule cannot be manipulated by coalitions of two or more members, but with the assumption that everyone

employs leximin extension, a complete ordering of Xk, and then prove that a strategy-proof rule must be

dictatorial if it selects a fixed number of alternatives at each profile.  An extension principle that yields a

linear order on the family of k-element sets appears to be far too demanding, especially for situations in

which the committee member’s welfare is only indirectly affected by the outcome.  This paper employs a

fairly weak extension property.  We merely assume that an individual will manipulate to get the subset Y

instead of Z if it is possible to transform Z into Y by replacing some members of Z with preferred

alternatives.  We say that an extension rule has the replacement property in that case. 

2.  Definitions and Notation

We begin by fixing a positive integer k > 1.  The finite set X of alternatives has more than k members. 

We let Xk denote the collection of all k-element subsets of X.   For any Y d X and any binary relation R

we let R*Y denote the relation R _ Y × Y, the restriction of R to Y.  A linear ordering ™ on X is a

transitive relation on X such that either x ™ y or y ™  x (but not both) holds for any distinct x and y in X. 

L(X) denotes the set of linear orderings on X.  We write x š y if either x = y or x ™ y.

A profile r = (r(1), r(2), ..., r(n)) is a function from the set N = {1, 2, ..., n} into L(X).  We use

x ™r
i y to denote the fact that individual i strictly prefers x to y at profile r.  For Y d X and any profile r,

we let r*Y denote  (r(1)*Y,r(2)*Y,...,r(n)*Y), the restriction of r to Y.  If r(i) 0 L(X) then we designate

the top-most element by r(i)[1], the second-ranked element by r(i)[2], the set containing the top two by

r(i)[1,2], etc.  We abbreviate r(i)[1,2,..., k] by r(i)[1:k].  (When convenient we treat r(i)[j] as a set, and

sometimes we treat it as a member of X.)

For the purpose of this paper, a social choice rule g is a map from L(X)N into Xk.  Profile p is an

i-variant of profile r if p differs from r only in its value for individual i.  For k > 3 and n = 2 our results

apply only to social choice rules that select k members of r(1)[1:k+1] whenever r(1)[1:k+1] =

r(2)[1:k+1].  The range of g is the set of Y in Xk such that g(p) = Y for some profile p in the domain of g.
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Extended unanimity    If n = 2 then g(r) d r(1)[1:k+1] if r 0 L(X)N and r(1)[1:k+1] = r(2)[1:k+1].

For k = 2 and 3 we are able to derive extended unanimity from strategy-proofness.

An extension principle E maps each ordering ™ in W(X) into a binary relation E(™) on Xk. If at

profile p the subset Y ranks strictly above Z in the extension of p(i), and it’s clear which extension

principle is employed, we will typically say that “p(i) ranks Y above Z.”  We will assume that each

individual’s extension principle has the replacement property, which means that set Y ranks strictly

above set Z if Y can be obtained from Z by replacing some members of Z with strictly preferred

alternatives:

The replacement property:  If Y and Z are two sets of cardinality k then an individual with the

preference ordering ™ on X prefers Y to Z under an extension principle with the replacement property if

we can number the elements of the sets Y = {y1, y2,...,yk} and Z = {z1, z2,...,zk} such that yt š zt for all t 0

{1,2...,k}, and yt ™ zt for some t.  (Note that if k = 1 then {x} ™ {y} if and only if x ™ y.)

The following extension principle clearly satisfies the replacement property:

The substitution extension principle.  Y is preferred to Z if and only if we can number the elements of

the sets Y = {y1, y2,...,yk} and Z = {z1, z2,...,zk} such that yt š zt for all t 0 {1,2...,k}, and yt ™ zt for some

 t.  

Any other extension satisfying the replacement property will rank Y above Z for a given p(i) if

substitution extension ranks Y above Z at p(i).  It is obvious that if X has k+1 members, then substitution

gives a complete ordering of the members of Xk for any ordering in L(X).  However, substitution

extension will not give a complete ranking of Xk if X has more than k+1 members: If the primitive

ordering ™ of X has w ™ x ™ y ™ z then the substitution extension of ™ does not have {w,z} ranking above

{x,y}, nor does it have {x,y} ranking above {w,z}.  It is clearly far from complete. 

Note that the substitution extension of any weak ordering is asymmetric, as a consequence of the

transitivity of the relation ™ on X.  The following obvious property of substitution extension will be used

in the next section without explicitly citing it.

Lemma 1: The substitution extension of an arbitrary linear ordering ™ in L(X) ranks the set

consisting of the top k elements of ™ above every other k-element subset of X.  Similarly,

for any large enough subset XN of X, the set consisting of the top k elements of the

ordering  ™*XN ranks above every other k-element subset of XN.  
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Proof:  Let Y = {x1,x2,...,xk} be the set consisting of the k top ranked alternatives from X according to ™. 

Assume that the alternatives are numbered so that x1 ™ x2 ™ ... ™  xk!1 ™ xk.  Let Z = {z1,z2,...,zk} be some

other k-element set, numbered so that z1 ™ z2 ™ ...  ™ zk.  Let j be the smallest integer such that xj ó Z. 

Then xj ™ zj and xi = zi for all i < j.  And we have 

xj+1 ™ xj+2 š zj+1, and xj+2 ™ xj+3 š zj+2

and so on.  We get xi ™ zi for all i $ j.      G

As usual an individual manipulates when he reports a false preference ordering in order to

precipitate an outcome that he prefers, according to his true preference scheme, to the one that emerges

when that true preference is submitted.  However, when more than one alternative is selected, the formal

definition depends on the extension principle employed.

Manipulation:  Social choice rule g is manipulable at profile p by individual i, if there exists an i-variant

r of p such that g(r) is strictly preferred to g(p) according to the extension of p(i).  And g is manipulable

at p by coalition J f N if there are two profiles p and r such that p(i) = r(i) for all i 0 N\J and each j 0 J

prefers g(r) to g(p) under the extension of p(j).

We will identify a set of modest conditions that imply that the social choice rule is dictatorial,

assuming that individuals employ substitution extension.  It follows that same set of conditions imply that

the social choice rule is dictatorial if any individual employs any extension principle with the

replacement property.  Therefore, we will merely assume substitution extension from now on.

Strategy-proofness: Social choice rule g is strategy-proof if no individual can manipulate at any profile. 

Dictatorship: If � f L(X)N then person i is a dictator for g:� ÿ Xk  if for every admissible profile r 0 �

the set g(r) ranks higher in the extension of r(i) than any other member of the range of g.  In general, for

� f W(X)N, person i is a dictator for g:� ÿ Xk  if for every admissible profile r 0 � there is no member

of the range of g that ranks higher in the extension of r(i) than g(r).

The following three examples provide some insight into our dictatorship result for the selection

of exactly two alternatives.

Example 1: Choose person 1's top ranked alternative and person 2's top-ranked alternative if they are

different.  If they are the same chose the two alternatives in person 1's ordering.  If the preferences are as
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       p(1)       p(2)

        x            x

        z            y

        y            z

       !           !

in the table then, because the substitution extension of p(2) ranks {x, y} above {x, z}, person 2 can

manipulate at p because g(p) = {x, z}, but the set {x, y} will be chosen if person 2 reports an ordering

with y on top. 

Example 2: There are three individuals and X = {x, y, z}.  Choose the majority winner if there is one,

and also the majority winner from X\{w} where w is the overall majority winner.  If there is no overall

majority winner select the majority winner from {x, y} and also the majority winner from X\{w} where

w is the majority winner from {x, y}.  If the preferences are as in the table then person 3 can manipulate

       p(1)       p(2)      p(3)

        x            y          z

        y            z          x

        z            x          y

at p because g(p) = {x, y} but {y, z} will be selected if person 3 reports the same ordering as individual

2.Note that the substitution extension of p(3) ranks {y, z} above {x, y}.

Example 3: Select whichever of person 1's top two alternatives is preferred by person 2, and also select

the alternative preferred by person 2 in the set consisting of person 1's third ranked alternative and

whichever alternative from 1's top two was not selected initially.  If the preferences are as in the table

then person 1 can manipulate at p because g(p) = {x, z}, although {x, y} will be selected if person 1

reports (x, w, y, z, þ ), the ordering with x first, then w, then y, then x.  Note that the substitution

extension of p(1) ranks {x, y} above {x, z}.
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       p(1)       p(2)

        x            x

        y            z

        z            y

        w            w

       !            !

Because we are mainly concerned with manipulation by a single individual, when we compare

the output of a social choice rule at two different profiles p and r we will have to do so by tracking the

output on a sequence of profiles beginning at p and ending at r and which changes only one individual

preference at each step.

Standard sequence: Given two profiles p and r, the standard sequence from p to r is the following

sequence {pt} of profiles

        p = p0 = (p(1), p(2), p(3), ..., p(n))

p1 = (r(1), p(2), p(3), ..., p(n))

p2 = (r(1), r(2), p(3), ..., p(n)

    !

pn = (r(1), r(2), r(3), ..., r(n)) =  r.

Note that successive terms pt!1 and pt of the standard sequence are t-variants, because

pt–1 = (r(1), r(2), ..., r(t–1), p(t),p(t+1), ..., p(n)), and

pt  =  (r(1), r(2), ..., r(t–1), r(t), p(t+1), ..., p(n)).  

3.  The results

We assume throughout that X has more than k members and that each person employs the substitution

extension principle.  We prove that if the rule g: L(X)N ÿ Xk has range Xk and is invulnerable to

manipulation then it is dictatorial.  We first prove this claim for n = 2, and when invulnerability to

manipulation means that no individual can manipulate g.  Then we prove the claim for any n, but to do so
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we have to assume that g cannot be manipulated by any coalition.  Finally, we prove the claim for

arbitrary n and k = 2, but without having to assume that g cannot be manipulated by any coalition of two

or more persons.  Because we employ the substitution extension principle, each result is valid for any

extension principle with the replacement property.   We begin with a simple and basic lemma.  It is valid

even when X contains only two members and k = 1.

Lemma 2: Suppose that g:L(X)N ÿ Xk is strategy-proof under substitution extension and Y 0 Xk

belongs to the range of g.  If p(i)[1:k] = Y for all i 0 N then g(p) = Y.

Proof: We have g(q) = Y for some q by the range assumption.  If p(i)[1:k] = Y for all i 0 N then let {qt}

be the standard sequence from q to p.  We know that g(q0) = Y.  Suppose g(qt) = Y.  If g(qt+1) … Y then

t+1 can manipulate g at qt+1 because the substitution extension of qt+1(t+1) = p(t+1) ranks Y above every

other k-element subset of X.  Therefore, g(qt+1) = Y.  Then g(p) = g(qn) = Y by induction.     G

The starting point for all of our strategy-proofness-implies-dictatorship results is the case n = 2. 

Lemma 2 implies that when n = 2, for any profile r, arbitrary individual i has the power to ensure that the

outcome is r(j)[1:k] for j … i.  That follows from the fact that g(rN) = r(j)[1:k] when rN(j) = r(j) = rN(i).  It is

often said that r(j)[1:k] belongs to person i's option set at r (Barberà, 1983).  However, we prefer to say

that "person i can get r(j)[1:k]" leaving the reference to Lemma 2 implicit.

Our first theorem applies only to a two-person group.  If k = 2 or 3 then strategy-proofness and

the range assumption implies extended unanimity.  We suspect that this is the case for any k, but we have

not been able to prove that  — or come up with a counterexample.  Hence we assume that g has the

extended unanimity property if k is greater than 3.  

Theorem 1: Assume that X contains at least k+1 alternatives and n = 2.  Suppose that g:L(X)N ÿ Xk

is strategy-proof under substitution extension, the range of g is Xk, and g satisfies

extended unanimity if k $ 4.  Then some individual is a dictator for g.

Given a (k+1)-element subset Z of X and a fixed profile q 0 L(X)N let �Z be the set of profiles p

0 � such that p(i)[1:k+1] = Z for i = 1 and 2 and p*X\Z = q*X\Z.  For arbitrary p 0 �Z, we set gZ(p) =

g(p), to define gZ.  If k > 3, extended unanimity gives us gZ(p) d Z for any p 0 �Z.   For k = 2 or 3 we

need another lemma before we turn to the proof of the proposition.  When we say that person i’s top

belongs to g(p), we mean that p(i)[1] 0 g(p).

Lemma 3. Assume that k = 2 or 3 and n = 2.  Let Z be any subset of X with exactly k+1 members. 
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If g is strategy-proof under substitution extension, and the range of g is Xk, then gZ(p) is a

subset of Z.

Proof:   Step 1: We begin by showing that strategy-proofness of g implies that gZ(p) is a subset of Z if k

= 2, and also if k = 3 and p(1)[1] = p(2)[1]. Profile p is in �Z, so p(i)[1:k+1] = Z and p(i)*X\Z = q(i)*X\Z

for i = 1 and 2.  Suppose that g(p) is not a subset of Z.  That is, there is some alternative a in g(p) but not

in p(1)[1:k+1] = p(2)[1:k+1].  Because person i can get p(j)[1:k] for j … i we must have p(i)[1] 0 g(p) for

i = 1, 2.  That follows from the fact that p(i) ranks p(j)[1:k] above every k-element subset of X that

contains a but not p(i)[1].  Then a 0 g(p) _ X\Z and k = 2 implies p(1)[1] = p(2)[1] because both tops

belong to g(p).  But r(2)[2] ™p
1 a and thus person 1 can manipulate g at p because person 1 can get

r(2)[1,2].  Therefore, g(p) d Z if k = 2.

Suppose a 0 g(p) _ X\Z and k = 3.  If p(1)[1] = p(2)[1] then g(r) = {x, a, z} for some z 0 X\{a,x}

and x = p(1)[1].  Then p(1) will prefer p(2)[1:3] to g(p) unless p(1)[2] 0 g(p) and p(1)[2] ó p(2)[1:3].  (If

p(1)[2] ó g(p) then person 1 can manipulate at p because p(2)[1:4]\p(1)[2] is preferred by p(1) to every

other three-element subset of X\p(1)[2].  If p(1)[2] 0 p(2)[1:3] then obviously p(1) ranks p(2)[1:3] above

g(p).)  But p(1)[2] ó p(2)[1:3] implies p(1)[2] = p(2)[4], in which case p(1)[2] 0 g(p) implies 

g(p) = {p(2)[1], p(2)[4], p(2)[t]} = {p(1)[1], p(1)[2], p(2)[t]} for some t $ 5.  

Then p(2) ranks p(1)[1:3] above g(p).  Therefore, strategy-proofness of g implies gZ(p) d Z if p(1)[1] =

p(2)[1].

Step 2: The next step is to show that if k = 3 and gZ(p) is a not subset of Z then person 1's top-ranked

alternative is person 2's fourth-ranked alternative, and person 2's top-ranked alternative is person 1's

fourth-ranked alternative.  

Suppose a 0 g(p) _ X\Z, k = 3, and p(1)[1] = x … y = p(2)[1].  Then g(p) = {x, y, a}.  (Recall that

both tops belong to g(p).)  If x 0 p(2)[1:3] then p(1) ranks p(2)[1:3] above g(p) and if y 0 p(1)[1:3] then

p(2) ranks p(1)[1:3] above g(p).  Therefore, strategy-proofness of g implies x = p(2)[4] = p(1)[1] and y =

p(1)[4] = p(2)[1].  

Step 3: Finally we show that even when person 1's top-ranked alternative is person 2's fourth-ranked

alternative, and person 2's top-ranked alternative is person 1's fourth-ranked alternative g(p) must be a

subset of Z (assuming k = 3).  We have established that if p 0�Z and g(p) is not a subset of Z then k = 3

and p has the form of the profile of Table 1 for which {c, d} = {w, z}, and g(p) = {x, y, a} for some a 0
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X\Z:

          Table 1       

       p(1)       p(2)

        x            y

        w           c

        z            d

        y            x

       !           !

        a            a

       !           !

We will use Table 2 to arrive at a contradiction.  Profile t of Table 2 belongs to �Z. 

          Table 2       

       t(1)       t(2)

        w           z

        z           w

        x            y

        y            x

       !           !

        a            a

       !           !

If g(t(1),p(2)) … Z\{x} then person 1 can manipulate at p by reporting t(1) because g(t(1),p(2)) is a subset

of Z by Step 2 and g(t(1),p(2)) will contain x and two other members of Z, one of which will rank at least

as high as y in p(1) and the other will rank higher than a in p(1).  Similarly, g(p(1),t(2)) … Z\{y} implies

that person 2 can manipulate g at p by reporting t(2).  Therefore, we have 

g(t(1),p(2)) = Z\{x} and g(p(1),t(2)) = Z\{y}.

It follows that g(t) = {x, w, z} because person 1 can get t(1)[1:3] by reporting p(1).  But we also

conclude that g(t) = {y, w, z} because person 2 can get t(2)[1:3] by reporting p(2).  The contradiction
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forces us to conclude that g(p) d Z for the profile p of Table 1.  For k = 3 we have gZ(r) d Z for all r 0 �Z. 

       G

Proof of Theorem 1:  We proceed by induction on *(r), which we define as the cardinality of the

smallest subset Y of X such that *Y* $ k and, for all i 0 N, y ™r
i z for all y 0 Y and all z 0 X\Y.  There is

such a smallest set for any profile because we can begin by setting Y = X.  We start with *(r) = k + 1.

Lemmas 2 and 3 and extended unanimity imply that for every (k+1)-element subset Z of X the

range of gZ is Zk, the set of k-element subsets of Z.

Step 1:  We prove that there is a dictator for gZ for every (k+1)-element subset Z of X.  Let ™ be a linear

ordering on Z = {x1,x2,...,xk,xk+1}, where we have numbered the members of Z so that xh ™ xj if and only if

h < j.  Then if ™* is the substitution extension of ™ we have Z\{xj} ™* Z\{xh} if and only if h < j.  Note

that this is a complete ordering on Zk.  And conversely, if ™* is a linear ordering on Xk then ™* is the

substitution extension of one and only one linear ordering on Z, as we now prove.  Number the elements

of Zk / {Z1, Z2 ,..., Zk, Zk+1} so that Zh ™* Zj if and only if h < j.  And number the elements of Z /

{z1,z2,...,zk,zk+1} so that Zj = Z\{zj}.  Then ™* is the substitution extension of the linear ordering zk+1 ™ zk ™

...  ™ z2 ™ z1.  Therefore, there is an isomorphism between P(Z)N and the set of profiles of substitution

extensions of the members of P(Z)N.  We can think of Zk as the alternative set for gZ.  With this

interpretation in mind, if � = L(X)N then �Z satisfies the domain assumption of the Gibbard-Satterthwaite

theorem.  We have established that gZ satisfies the range assumption of the Gibbard-Satterthwaite

theorem.  Therefore, gz is dictatorial for every (k+1)-element subset Z of X.

We now show that if person 1 is a dictator for gZ, and Z is a (k+1)-element subset of X, then we

have g(r) = r(1)[1:k] whenever r(1)[1:k+1] = Z = r(2)[1:k+1], whether or not r*X\Z = q*X\Z.  Assume

that r(1)[1:k+1] = r(2)[1:k+1] = Z.  If r(1)[1:k] = r(2)[1:k] then Lemma 2 gives us the desired conclusion. 

Assume then that r(1)[1:k] … r(2)[1:k].  Define p by setting p(1) = r(1) and p(2)*Z = r(2)*Z with p(2)*X\Z

= q(2)*X\Z.  Then strategy-proofness of g implies g(p) = p(1)[1:k] = r(1)[1:k] because person 1 can get

p(1)[1:k] by reporting an ordering that ranks the members of X\Z according to q(1).  Let gN be the social

choice rule that is defined in the same way as gZ except that we replace q with (p(1),q(2)).  Then gN must

be dictatorial by the previous paragraph, and the dictator must be person 1 because g(p) = p(1)[1:k} …

p(2)[1:k].  Now define qO exactly as we defined gZ except that we replace q with r.  The dictator for qO

must person 1, otherwise person 2 could manipulate at pN when pN(1) = r(1), pN(2)*X\Z = q(2)*X\Z and

pN(2)[1:k] … r(1)[1:k].  Therefore, we have established that g(r) = r(1)[1:k] whenever r(1)[1:k+1} =

r(2)[k+1].  Therefore, we can think of gZ as defined whenever Z has k+1 members and r(1)[1:k+1] =
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r(2)[1:k+1].  We have shown that gZ will be dictatorial. 

If X has exactly k+1 members then we are finished with the proof of the proposition. Suppose,

then, that X has more than k+1 members.  We now show that there is an individual i such that g(p) =

r(i)[1:k] whenever r(1)[1:k+2] = r(2)[1:k+2], and hence that we can think of gZ as defined whenever Z

has k+2 members and r(1)[1:k+2] = r(2)[1:k+2]. Consider any k!1 element set A d X and three distinct

alternatives x, y, and z in X\A.  We will show that some person is a dictator for gA^{x,y,z}.  Our first step is

to show that A d g(r) d A ^ {x,y,z} for any profile r 0 � such that r(1)[1:k!1] = A = r(2)[1:k!1] and

r(1)[1:k+2] = A ^ {x,y,z} = r(2)[1:k+2].  We begin by representing r as follows :

           Table 3       

       r(1)         r(2)

        A            A

        x          r(2)[k]

        y        r(2)[k+1]

        z        r(2)[k+2]

       !             !

(We do not mean to suggest that r(1) and r(2) order the members of A in the same way, but merely that

r(1)[1:k!1] = r(2)[1:k!1].  Note that the three alternatives ranked below A in r(2) are x, y, and z in some

order.)  If r(2)[k+2] = z then A d g(r) by the previous paragraph because some individual is a dictator for

gA^{x,y}.  Suppose r(2)[k+2] = y.  If r(2)[k] = x then g(r) = A ^ {x} by Lemma 2.  Therefore, if r(2)[k+2] =

y we only have to look at the case r(2)[k] = z.  Then we have the profile of Table 4:

           Table 4       

       r(1)         r(2)

        A            A

        x             z

        y             x

        z             y

       !            !
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Person 2 can get A ^ {x} by Lemma 2, and r(2) ranks A ^ {x} above every other k-element subset of X

except A ^ {z}.  Therefore, strategy-proofness implies either g(r) = A ^ {x} or g(r) = A ^ {z}.

We conclude that if A is not a subset of g(r) then we must have r(2)[k+2] = x.  We can rule out

r(2)[k] = y by the previous paragraph, just by interchanging the roles of the two individuals.  Therefore,

only one case remains:

           Table 5       

       r(1)         r(2)

        A            A

        x             z

        y             y

        z             x

       !             !

Person 1 can get A ^ {z} which is preferred by r(1) to any member of Xk except sets containing x or y.  If

A is not a subset of g(r) but g(r) does not contain both x and y then person 1 can manipulate g at r, This

follows from the fact that r(1) ranks A ^ {z} above every k-element subset of X\{x} that does not contain

A and  to every other k-element subset of X\{y} that does not contain A.  Therefore, both x and y belong

to g(r).  The same argument from the standpoint of person 2 will show that g(r) must contain z and y. 

Therefore, if A is not a subset of g(r) then {x,y,z} d g(r).  But then there must be two members of A, call

them a and b, that do not belong to g(r).  Now, person 1 can get A ^ {z}, and a ™ r
1 x and b ™ r

1 y. 

Therefore, person 1 can manipulate g at r.  We must have A d g(r) after all.

We have proved that A d g(r) for any profile r such that r(1)[1:k!1] = A = r(2)[1:k!1] and

r(1)[1:k+2] = r(2)[1:k+2].  But this means that g(r) d r(1)[1:k+2]: Person 1 can get A ^ r(2)[k] which r(1)

ranks above A ^ {w} for any w not belonging to r(1)[1:k+2].

A is an arbitrary subset of X with k!1 elements and x, y, and z are any three members of X\A. 

Let �A be the set of all p 0 L(X)N such that p(i)[1:k!1] = A and p(i)[1:k+2] = A ^ {x,y,z} for i = 1,2.  We

have A d g(p) d A ^ {x,y,z} for all p 0 �A.  Consider the single-valued social choice rule gA with domain

�A defined by setting gA(p) = g(p)\A.  Lemma 2 implies that the range of gA is {x,y,z}.  Therefore, the

Gibbard-Satterthwaite theorem implies that gA is dictatorial.  (Note that gA is strategy-proof: Suppose

gA(pN) ™p
i gA(p) for some pN in �A that is an i-variant of p.  But then p(i) ranks A ^ gA(pN) above g(p),
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contradicting the strategy-proofness of g.)  Suppose that person 1 is the dictator for gA^{x,y}.  Then if q is

           Table 6       

       q(1)         q(2)

        A            A

        x             y

        y             x

        z             z

       !            !

the profile of Table 6 we have g(q) = A ^ {x}.  Then person 1 is the dictator for gA.  This means that g(s)

= A ^ {x} if s is the profile of Table 7.  Therefore, person 1 is the dictator for gA^{x,z}.  Similarly,

           Table 7       

      s(1)        s(2)

        A            A

        x             z

        z             x

        y             y

       !            !

if person 1 is a dictator for gA^{x,y} then he is a dictator for gA^{y,z}.  Choose any alternative b not in

A ^ {x,y,z}.  At the profile p of Table 8 we have g(p) = A ^ {x} because person 1 can get A ^ {x} by 
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            Table 8       

       p(1)         p(2)

        A            A

        x             y

        y             x

        b             z

       !            !

reporting q(1) of Table 6.  Consider profile u of Table 9.  It is the same as p of Table 8 except that 

           Table 9       

      u(1)        u(2)

        A            A

        x             y

        y             x

        b             b

       !            !

we replace z in person 2's ordering with b.  If g(u) = A ^ {y} then person 2 can manipulate at p by

reporting u(2).  Therefore, g(u) … A ^ {y}.  But u(2) ranks A ^ {x} above any other k-element subset of

X except A ^ {y}.  Therefore, g(u) = A ^ {x} by strategy-proofness of g.  Therefore, person 1 must be

the dictator for gA^{x,b}.  By substituting one alternative at a time in this way we can show that some

individual i is a dictator for gZ for every (k+1)-element subset Z of X.

Recall that *(r) is the cardinality of the smallest subset Z of X such that every individual ranks

every member of Z above every member of X\Z at r (and *Z* $ k).  We next show that g(r) = r(1)[1:k] if

*(r) = k or k+1, assuming that person 1 is the dictator for gZ.

Step 2    Set Z = {x1,x2,...,xk,xk+1} and let r be the profile:
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           Table 10       

       r(1)         r(2)

        x1           x1  

        x2           x2               

      

        !            !

        xk           xk+1 

       xk+1           xk 

       !              !

Either person 1 or 2 is a dictator for gZ.  Therefore, g(r) = Z\{xk+1} or Z\{xk}.  Without loss of generality,

assume that g(r) = Z\{xk+1}.  We will prove that person 1 is a dictator for g.  That is, we have to show that

g(r) = r(1)[1:k] for all r.  If *(r) = k then g(r) = r(1)[1:k] by Lemma 2.  If *(r) = k+1 then g(r) = r(1)[1:k]

by step 1.  We have proved that g(r) = r(1)[1:k] for all r such that *(r) = k or k+1.  Of course, the final

step is to extend this to all values of *(r).

Step 3.  Suppose that g(r) = r(1)[1:k] for all r such that *(r) < R and in the present instance we have *(r) =

R.  If r(2)[R] ó r(1)[1:k] then strategy-proofness implies that g(r) = r(1)[1:k] because the induction

hypothesis implies that g(rN) = rN(1)[1:k] for rN satisfying rN(2) = r(2), rN(1)[1:k] = r(1)[1:k], and rN(1)[R] =

r(2)[R].  Now, consider the following statement D(j):

D(j) g(r) = r(1)[1:k} when r(2)[R] = r(1)[j].

We know that D(R) is true.  We now prove that D(j) implies D(j!1).  D(j!1) is obviously true for j!1 > k,

by strategy-proofness, because the induction hypothesis implies that g(rN) = rN(1)[1:k] for rN satisfying

rN(2) = r(2), rN(1)[1:k] = r(1)[1:k], and rN(1)[R] = r(2)[R].  And D(j!1) holds if D(j) is true for j # k because

then we have g(rN) = rN(1)[1:k] = r(1)[1:k] if rN(2) = r(2) and rN(1) is the same as r(1) except that

rN(1)[j!1] = r(1)[j] and rN(1)[j] = r(1)[j!1].  Therefore, we must have g(r) = r(1)[1:k] by strategy-

proofness.  It remains to prove that D(k) holds if D(k+1) does.  Suppose that D(k+1) holds, r(2)[R] =

r(1)[k], but g(r) … r(1)[1:k].  Then person 1 can get r(1)[1:k+1]\r(1)[k] because D(k+1) implies that g(rN)

= rN[1:k] if rN(2) = r(2) and rN(1) is the same as r(1) except that r(1)[k] and r(1)[k+1] exchange places. 

But r(1) ranks r(1)[1:k+1]\r(1)[k] above every k-element subset of X except r(1)[1:k].  Therefore, g(r) …

r(1)[1:k] implies g(r) = r(1)[1:k+1]\r(1)[k].  But then person 2 can manipulate g at rO if we define rO so

that rO(1) = r(1) and rO(2) is the same as r(1) except that r(1)[k] and r(1)[k+1] exchange places: We have
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g(rO) = rO(1)[1:k] = r(1)[1:k] by D(k+1).  And g(rO(1),r(2)) = g(r) = r(1)[1:k+1]\r(1)[k], and rO(2) ranks

that set above r(1)[1:k] because r(1)[k+1] ranks above r(1)[1] in rO(2).  Therefore, we must have g(r) =

r(1)[1:k] if g is strategy-proof.  Then D(k) holds if D(k+1) does, and thus D(j) holds for all j by

induction.  This obviously implies that g(r) = r(1)[1:k] for all r such that *(r) = R.  By induction on R,

person 1 is a dictator for gX = g.     G

Now we show how Theorem 1 can be used to extend the dictatorship result to n > 2 if we restrict

our attention to social choice rules that cannot be manipulated by any individual or by any coalition.  

Theorem 2: Given k $ 2, assume that X is a finite set containing at least k+1 alternatives, and the range

of g:L(X)N ÿ Xk is Xk.  If no individual or coalition can manipulate g under substitution extension, then

some individual is a dictator for g.

Proof: This certainly must be the case if n = 1.  Theorem 1 establishes the claim for n = 2.  Suppose than

that n > 2,  N = {1,2,...,n}, and we have proved the claim for n!1.  

For each i 0 N, define the social choice rule gi for society N\{i+1}, by setting gi(p) = g(r) for the

profile r obtained by setting r(h) = p(h) for all h 0 N\{i+1}, and setting r(i+1) = p(i) = r(i).  (We treat n+1

as person 1.)  Because r(i) always equals r(i+1) in the domain of gi we can think of gi as defined for a

society of n!1 persons.  Because g cannot be manipulated by any coalition, the contrived rule gi cannot

be manipulated by any coalition.  Then the induction hypothesis implies that gi is dictatorial for each i 0

N.  Suppose that person j is the dictator for gi and j … i.  We also have j … i + 1, by definition.  We show

that person j is a dictator for g.

Choose any profile p 0 L(X)N.  Let r be any profile such that r(h) = p(h) for h 0 N\{i,i+1}, with

r(i) and r(i+1) satisfying

r(i) = r(i+1),  and   r(i)[m!k+1:m] = p(j)[1:k] = r(i+1)[m!k+1:m]

In words, the k alternatives at the top of p(j) are at the bottom of r(i) and r(i+1).  We have g(r) = p(j)[1:k]

because person j is a dictator for gi.  Then g(rN) = p(j)[1:k] for the profile

rN = (r(1),...,r(i!1),r(i),p(i+1),r(i+2),...,r(n))

otherwise person i+1 could manipulate g at r.  But g(rN) = p(j)[1:k] implies that g(p) = p(j)[1:k] because

p = (r(1),...,r(i!1),p(i),p(i+1),r(i+2),...,r(n))
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which is an i-variant of rN.  If g(p) … p(i)[1:k] then person i could manipulate at rN because r(i) ranks any

k-element subset of X to p(j)[1:k], except for p(j)[1:k] itself of course. We have g(p) = p(j)[1:k] for

arbitrary p, so person j is a dictator for g.

Suppose, then, that person i is the dictator for gi for each i 0 N and m is the cardinality of X.  The

case m = k is trivial.  Hence we may assume that m $ k+1.  We first take care of the case n = 3.  Because

m $ k+1 we can find two disjoint subsets A and {x,y,z} of X such that A has k!2 members and {x,y,z}

has three members.  We allow A to be empty (when k = 2.).  Let r be the following profile:

                   Table 11  

       r(1)        r(2)         r(3)

          A           A            A

          x            y             z

          y            z             x  

          z            x             y

         !           !            !

At r, individuals 1, 2, and 3 may order the members of A differently, but the Table is meant to show that

r(1)[1:k!2] = r(2)[1:k!2] = r(3)[1:k!2].

Our first step is to show that A d g(r).  Suppose not.  Then y 0 g(r) because person 1 can get A ^

{x,z} by reporting r(3) because person 3 is the dictator for g3.  And r(1) ranks A ^ {x,z} above any k-

element subset of X\{y}.  We must also have z 0 g(r) because person 2 can get A ^ {x,y} by reporting

r(1).  (Person 1 is the dictator for g1.)  And r(2) ranks A ^ {x,y} above any k-element subset of X\{z}. 

Similarly, x must belong to g(r) if A is not a subset of g(r).

Then if A is not a subset of g(r) we have {x,y,z} d g(r).  But g(r) has k members, so there exists

some a 0 A\g(r).  But then person 1 can manipulate g at r because person 1  can get A ^ {x,z} by

reporting r(3) (person 3 is the dictator for g3), and a ™ r
1 y so r(1) ranks A ^ {x,z} above g(r).  Therefore, A

d g(r).  If z ó g(r) then g(r) = A ^ {x,y} because person 3 can get A ^ {x,y} by reporting r(1), because

person 3 is the dictator for g3.  And r(3) ranks A ^ {x,y} above any k-element subset of X\{z}.  But if g(r)

= A ^ {x,y} then person 3 can still manipulate at r because person 3 can get A ^ {y,z} by reporting r(2),

because person 2 is the dictator for g2, and r(3) ranks A ^ {y,z} above A ^ {x,y}.  Therefore, z belongs to
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g(r).  But the profile r is symmetrical with respect to the alternatives and the three individuals.  So we

know that y and z also belong to g(r).  Now we have A d g(r) and {x,y,z} d g(r).  But this is impossible

because A ^ {x,y,z} has k+1 elements and g(r) selects k alternatives at each profile in its domain.

We have our proof for n # 3.  Suppose then that n > 3.  As demonstrated above, if some j 0 N is a

dictator for some gi for i … j … i+1 then j is a dictator for g.  Suppose that each i 0 N is a dictator for gi. 

Let r be any profile such that

r(1) = r(2), r(3) = r(4), and r(1)[1:k] … r(4)[1:k]

We have g(r) = r(1)[1:k] because person 1 is a dictator for g1, and g(r) = r(3)[1:k] because person 3 is a

dictator for g3.  This contradiction concludes the proof.      G

The proof of Theorem 2 only uses singleton and two-member coalitions, so it might appear to

establish that if no individual or two-person coalition can manipulate g under substitution extension then

some individual is a dictator for g.  However, the proof employs an induction argument on n, the set of all

individuals.  We go from n = 2 to n = 3 by merging individuals 2 and 3.  Then we go from n = 3 to n = 4

by merging individuals 3 and 4.  Therefore, when n = 4 the coalition {3, 4} is in fact the coalition {2, 3,

4}, and so on.  Thus, for any n, coalitions with n!1 individuals play a role in the proof.

The final theorem assumes that k = 2, but dispenses with the assumption that coalitions of two or

more persons cannot manipulate.  The assumption that g cannot be manipulated by coalitions containing

more than one person is only used in proving Theorem 2.  This allowed us to prove that gi cannot be

manipulated.  However, if k = 2 we can prove that if g is strategy-proof then so is gi.

Theorem 3:  X is any set with more than two members and n is any positive integer.  If g:  L(X)N  ÿ X2

is strategy-proof when everyone employs substitution extension, and the range of g is X2, then g is

dictatorial.

Proof: Without loss of generality we consider g1 as defined in the proof of Theorem 2.

Let p and r be any two profiles in L(X)N such that

p(1) = p(2), r(1) = r(2), and p(i) = r(i) for all i > 2.

Suppose that g(r) ranks above g(p) in the substitution extension of p(1).  We will show that g can be

manipulated by a single individual. 
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Given p and r of the previous paragraph, let q be a profile for which q(i) = p(i) for all i > 2, q(1)

= q(2), q(1)[1,2] = g(r), q(1)[1:t] = g(r) ^ g(p), where t is the cardinality of the set g(r) ^ g(p).  (of course,

t = 3 or 4.)  We have g(q) = g(r) because g(q(1),r(2),p(3),...,p(n)) = g(r), otherwise person 1 could

manipulate at (q(1),p(2),p(3),...,p(n)) via r(1) and thus g(q) = g(r) because person 2 cannot manipulate at

r.  Therefore, g(q) ranks above g(p) in the substitution extension of p(1).

Suppose that g(p) _ g(r) = i.  Then we have two profiles p and q such that

p(1) = p(2), q(1) = q(2), q(1)[1,2] = g(q), q(1)[1:4] = g(q) ^ g(p)

and p(i) = q(i) for all i > 2.

Let g(p) = {a,b} and g(q) = {x,y}.  Without loss of generality, we assume that a ™p
1 b and x ™p

1 y.  Because

the substitution extension of p(1) ranks {x,y} above {a,b} we must have either

x ™p
1 a ™p

1 y ™p
1 b   or   x ™p

1 y ™p
1 a ™p

1 b.

Let s = (q(1),p(1),p(2),...,p(n)).  Then s is a 1-variant of p and a 2-variant of q.  If g(s) equals {a,b} or

{a,y} or {y,b} then person 2 can manipulate at s by reporting q(2).  If g(s) = {x,y} or {x,a} or {x,b} then

person 1 can manipulate at p by reporting q(1).  Therefore, g(s) is not a subset of {a,b,x,y}.  On the other

hand, if g(s) _ g(q) = i then person 1 can manipulate at s by reporting p(1) because the substitution

extension of q(1) ranks g(p) above every other two-element subset of X\g(p).  Therefore, we must have

g(s) = {c,z} for some c 0 {x,y,a,b} and some z 0 X\{x,y,a,b}.  If c 0 {a,b} then person 1 can manipulate

at s via p(1).  Therefore, g(s) = {x,z} or {y,z} for some z ó g(p) ^ g(q).  If g(s) = {x,z} and z ™p
1 y then

person 1 can manipulate at p by reporting q(1) because we would have z ™p
1 y ™p

1 b, and we already know

that x ™p
1 a.  If g(s) = {x,z} and y ™p

1 z then person 2 can manipulate at s by reporting q(2), because g(q) =

{x,y} and p(2) = p(1).  If g(s) = {y,z} and z ™p
1 x we have z ™p

1 x ™p
1 a and thus person 1 can manipulate at

p by reporting q(1).  (We already have y ™p
1 b.)  If g(s) = {y,z} and x ™p

1 z then person 2 can manipulate at

s by reporting q(2).  We have to abandon the supposition that g(p) ^ g(q) has four members, and thus

g(p) _ g(q) contains precisely one alternative, because we know that g(p) and g(q) have at least one

member in common.

Because g(p) _ g(q) is a singleton we can set g(p) = {x,b} and g(q) = {x,y}.  We have y ™p
1 b

because the substitution extension of p(1) ranks {x,y} above {x,b}.  Set s =  (q(1),p(1),p(2),...,p(n)) once

again.  If g(s) _ {x,b,y} = i then person 1 can manipulate at s by reporting p(1).  Therefore, we must
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have g(s) = {b,z] or {x,z} or {y,z} for some z 0 X\{x,b,y}.  If g(s) = {b,z] then person 2 can manipulate

at s by reporting q(2).  If g(s) = {x,z} and z ™p
1 b then person 1 can manipulate at p by reporting q(1).  If

g(s) = {x,z} and b ™p
1 z then y ™p

1 b ™p
1 z, and hence y ™p

1 z which implies that person 2 can manipulate at s

by reporting q(2).  But we also have y ™p
1 b, and hence g(s) = {y,z} and z ™p

1 x, which implies that person

1 can manipulate at p by reporting q(1).  If g(s) = {y,z} then z ™p
1 x, otherwise person 2 could manipulate

at s by reporting q(2).  Therefore, if g(s) = {x,z} we must have z ™p
1 x and y ™p

1 b, which means that

person 1 can manipulate at p by reporting q(1).  

We have exhausted all the possibilities.  Each leads to manipulation by a single individual.  That

is, if the substitution extension of p(1) ranks g(r) above g(p) then g can be manipulated by someone at

some profile.  Since g is strategy-proof, it follows that g1 is also strategy-proof.  Similarly, gi is strategy

proof for all i 0 N.  We know that Theorem 3 is true for n = 2.  Suppose N = {1, 2, . . . , n} and Theorem

3 is true for any number of individuals less than n.  Because gi is a strategy-proof rule for a society of

n!1 individuals the rule gi is dictatorial for each i 0 N.  Recall that n+1 is interpreted as person 1. 

Suppose that individual j 0 N\{i,i+1} is the dictator for gi.  It is easy to show that j is a dictator for g

itself.  If p 0 L(X)N then g(p) = p(j)[1,2] if the two alternatives in p(j)[1,2] rank at the bottom of p(i) for

all i 0 N\{j} and p(i) = p(h) for all i and h in N\{j}.  Let r be any profile in � such that r(j) = p(j), and let

{pt} be the standard sequence from p to r.  We know that g(p0) = g(p) = p(j)[1,2].  Then for any t $ 0 we

have g(pt+1) = p(j)[1,2] if g(pt) = p(j)[1,2] because at pt person t+1 ranks any two-element subset of

X\p(j)[1,2] above g(pt).  Therefore, g(pn) = g(r) = p(j)[1,2].  Then strategy-proofness of g implies that j is

a dictator for g.

Finally, suppose that for each i 0 N individual i is the dictator for gi.  If n = 3 then chose three

distinct x, y, and z in x and choose p 0 L(X)N such that p has a Latin square involving x, y, and z on top

and each individual has the same ordering R of the members of X\{x,y,z} as shown in Table 12:

                   Table 12  

       p(1)        p(2)         p(3)

          x            y             z

          y            z             x  

          z            x             y

         R            R            R
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At profile p person 2 can get {x, y} by reporting p(1)  — because person 1 is the dictator for g1 — and

hence a does not belong to g(p) for any a 0 X\{x,y,z}.  But if g(p) = {x, y} then person 3 can manipulate

g at p by reporting p(2)  — because person 2 is the dictator for g2.  If g(p) = {y, z} then person 1 can

manipulate g at p by reporting p(3)  — because person 3 is the dictator for g3.  And if g(p) = {x, z} then

person 2 can manipulate g at p by reporting p(1)  — because person 1 is the dictator for g1.   Therefore,

strategy-proofness of g implies that some j 0 N is a dictator for some gi such that i … j … i+1 and hence j

is a dictator for g.  

Suppose that for each i 0 N individual i is the dictator for gi but n $ 4.  Let p 0 L(X)N be the

ordering of Table 13:

                                    Table 13  

       p(1)        p(2)         p(3)      p(4)   þ  p(n!1)     p(n)

          x            y             z           z     þ       z            z

          y            z             x           x     þ       x            x

          z            x             y           y     þ       y            y

         R            R            R          R     þ      R            R

We have g(p) = {x, y} because person 1 is the dictator for g1, contradicting the conclusion that person 3

is the dictator for g3, which implies g(p) = {x, z}.  Again we conclude that strategy-proofness of g implies

that some j 0 N is a dictator for some gi such that i … j … i+1 and hence j is a dictator for g.      G

Theorem 2, which establishes dictatorship for any number n of individuals and any number k of

chosen alternatives general n and general k required non-manipulability by coalitions as well as

individuals.  The requirement of invulnerability of manipulation by coalitions can be dropped if either n

= 2( Theorem 1) or k = 2 (Theorem 3).  We do not know of if the statement of Theorem 2 remains true if

we drop the assumption of invulnerability of manipulation by coalitions.
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