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Abstract 
 
The use of  in Model Selection is a common practice in econometrics.  The rationale is that the 
statistic produces a consistent estimator of the true coefficient of determination for the 
underlying data while taking into consideration the number of variables involved in the model.  
This pursuit of parsimony comes with a cost: The researcher has no control over the error 
probabilities of the statistic.  Alternative measures of goodness of fit, such as the Schwarz 
Information Criterion, provide only a marginal improvement to the problem.  The F-Test under 
the Neyman-Pearson testing framework will provide the best alternative for model selection 
criteria. 
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1 Introduction

The use of R̄2 in model selection is a common practice in econometrics. Nearly every econo-

metric software would provide the researcher with this measure of goodness of fit along with

some other measures, such as the unadjusted R squared, the Akaike Information Criterion,

and the Schwarz Information Criterion. These statistics are then used in model selection

following a pre-specified rule. For the R̄2, the model with the highest statistic would repre-

sent the best-fit model. In this document, we will show that such a mechanism would lead

the researcher to unwanted conclusions. In section two, we will show that the R̄2 leaves

the researcher with no control over the error probabilities of the model selection. In section

three, we extend these results to the Schwarz Information Criterion. In section four, we will

put both statistics to the test. Finally, section five presents the conclusions.

2 The use of R̄2 in model selection

In econometric modeling, the addition of explanatory variables to a normal linear regression

model can never decrease the value of the unadjusted R squared, R2, even if the additional

variables have no explanatory power. Because of this and other reasons, the R2 is not

the preferred model selection criterion. For instance, as Montgomery and Morrison (1973)

have shown, the unadjusted R2 is a (positively) biased estimator of the true coefficient of

determination for the underlying population. Additionally, the coefficient does not penalize

the likelihood function for having additional variables.
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A somehow less biased estimator of the coefficient of determination is the adjusted coeffi-

cient of determination, Adjusted R Squared, R̄2 . Barton (1962) has shown that, although

positively biased, the estimator is consistent since it converges to the true coefficient of

determination when the sample size increases1.

Thus, although a consistent estimator of the true coefficient of determination, there is an

inherent danger in using R̄2 in model selection. It is widely believed that, since the statistic

takes explicit account of the number of regressor used in the equation, it is useful for com-

paring the fit of specifications that differ in the addition or deletion of explanatory variables

(Johnston and Dinardo, 1997). In practice, a model with a larger number of explanatory

variables and thus a higher unadjusted R2 would be preferred if and only if the R̄2 is higher

too. We will attempt to show that such a rational suffers from problems in statistical grounds

by using the criterion to select between two competing models.

For instance, consider the following polynomial regression model,

yt = β0 + ΣK−1
k=1 βkx

k
t + ut,

where ut ∼ N(0, σ2), t ∈ T ,

to be fitted to a data set {(xt, yt), t = 1, 2, ..., T}.

1For T > 10, the biased is 0.01 whereas for T > 100, the biased is 0.001, hence rendering a relatively

small bias even for small sample sizes.
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The R̄2 statistic, necessary for model selection, is defined as,

R̄2 = 1− (1−R2)
n− 1

n− k
,

where R2 =

(
1− RSS

TSS

)
=

(
1− σ̂2 · T

TSS

)
, RSS is the Residual Sum of Squares and TSS is

the Total Sum of Squares. A little algebra shows that,

R̄2 = 1− T − 1

T − k

σ̂2 · T
TSS

.

Thus, it is possible to relate the R̄2 to the Maximum Likelihood Estimator of σ2. Recall

that the log-likelihood function takes the form,

ln L(θ) = −T

2
ln(2π)− T

2
ln(σ2)− 1

2σ2
ΣT

t=1u
2
t ,

which takes its minimum value at

ln L(θ̂) = −T

2
ln(2π)− T

2
ln(σ̂2)− 1

2σ̂2
ΣT

t=1û
2
t ,

where σ̂2 =
1

T
ΣT

t=1û
2
t , ût = (yt − b0 − ΣK−1

k=1 bkx
k
t ), and b denote the Maximum Likelihood

Estimators of β.

Now suppose the existence of two competing models,

M2: yt = β0 + β1xt + β2x
2
t + β3x

3
t + ut

M1: yt = β0 + β1xt + ut
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and suppose that M1 was chosen over M2 based on the R̄2 criterion. That is, the addition of

the explanatory variables does not contribute to the explanatory power of the model. This

implies that,

1− T − 1

T − k1

σ̂2
1 · T

TSS
> 1− T − 1

T − k2

σ̂2
2 · T

TSS
,

that is

σ̂2
1

σ̂2
2

<
T − k1

T − k2

.

Equation 1

Note that it is possible to relate the previous condition to a Neyman-Pearson testing frame-

work via an F-test. In an F-test, we can relate the decision of accepting M1 instead of M2

with that of a test for,

H0: β2 = β3 = 0, vs. H1: β2 6= 0, or β3 6= 0.

The F-test for these hypotheses takes the form:

F (y) =

{(
σ̂2

1 − σ̂2
2

σ̂2
2

) (
T − k2

k2 − k1

)
, C1 = F (y) > cα

}
,

where C1 denotes the rejection region and cα the critical value associated with F (k2−k1, T −

k2). This suggests that the R̄2 of Equation 1 amounts to accepting H0 when,

F (y) =

(
σ̂2

1 − σ̂2
2

σ̂2
2

) (
T − k2

k2 − k1

)
< 1.
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This is an extremely dangerous result! The criterion leads the researcher with absolutely no

control over the significance level of the test. For instance, for (k2−k1) = 2 and T = 100, the

implicit significance level is around α = 0.37. That is, the probability to making a Type-I

error is 37 percent, way far from the standard levels of significance of 0.05, 0.01 and 0.001,

commonly used in the reporting of econometric research.

We can extend these results to compute different probabilities. For instance, we can compute

the probability of a model being overfitted when using this criterion. The fact that a model

is overfitted implies that R̄2
K+L > R̄2

K . The probability that the R̄2 criterion selects the

overfitted model is given by,

P

(
1− T − 1

T −K − L

σ̂2
K+L · T
TSS

> 1− T − 1

T −K

σ̂2
K · T
TSS

)
= P

(
− T − 1

T −K − L

σ̂2
K+L · T
TSS

> − T − 1

T −K

σ̂2
K · T
TSS

)
= P

(
T − 1

T −K − L

σ̂2
K+L · T
TSS

<
T − 1

T −K

σ̂2
K · T
TSS

)
= P

(
σ̂2

K+L

T −K − L
<

σ̂2
K

T −K

)
= P

(
σ̂K

σ̂2
K+L

>
T −K

T −K − L

)
= P

((
σ̂2

K − σ̂2
K+L

σ̂2
K+L

) (
T −K − L

L

)
> 1

)
= P (F (y) > 1)

= 1− CDF (1, L, (T −K − L)).

where CDF () is the cumulative distribution function of the F distribution.
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Asymptotically, the situation is not alleviated. Given that asymptotically the F test con-

verges in distribution to a chi-squared distribution, that is,

F (y) ⇒D 1

L
χ2(L),

then

lim
T→∞

P (R̄2
K+L > R̄2

K) = P (χ2(L) > L) > 0.

For instance, in our previous example, the probability that the criterion asymptotically

overfits the model by one is 31.73 percent.

3 A (conditionally) better alternative

Akaike (1974) started the pursuit of a model selection criterion based on different penaliza-

tions of the likelihood function with his Akaike Information Criterion (AICK). Although

still highly used in econometric reporting, early testing on the AIC showed that the statistic

suffered from two main drawbacks,

1) In small samples the criterion led to overfitting.

2) Asymptotically the chosen K was not a consistent estimator of the true K∗.

To deal with the small sample overfitting, several modified criterions have been suggested.

Amongst them, the Modified-AICK , proposed by Hurvich and Tsai (1989) and the Final
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Prediction Error, proposed by Akaike. Spanos (2007) has shown that, in small samples,

only the M-AIC performs better but maintains a positive probability of overfitting even

asymptotically.

To deal with the problem of inconsistency the preferred alternatives have been the Schwarz

Information Criterion (BIC)and the Hannan-Quinn Information Criterion2. These two cri-

teria perform better relative to AIC in small samples, with lower probabilities of overfitting,

and are asymptotically consistent, that is, the probability of asymptotically overfitting the

true model using these criteria is zero.

Following the previous discussion, we will derive the same probabilities described in the R̄2

criterion. The BIC is defined as,

BICK = ln σ̂2 +
K ln(T )

T

Thus, selecting M1 over M2 implies that

ln σ̂2
1 +

K1 ln(T )

T
< ln σ̂2

2 +
K2 ln(T )

T
,

or,

σ̂2
1

σ̂2
2

< T
k2−k1

T .

2Of these, BIC has become the standard in econometric reporting.
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The previous equation implies the following F-statistic,

F (y) =

(
σ̂2

1 − σ̂2
2

σ̂2
2

) (
T − k2

k2 − k1

)
<

(
T − k2

k2 − k1

) [
T

k2−k1
T − 1

]
.

Thus, for instance, for (k2 − k1) = 2 and T = 10, the implicit level of significance given by

the BIC is 0.10; for T = 25, α = 0.03; and for T = 100, α = 0.01; clearly decreasing with

the sample size.

Similarly, the probability of overfitting a model by L variables using this criterion is

P (F (y) >
T −K − L

L
[T

L
T − 1]),

which has been shown to be equal to zero asymptotically.

Does this mean that BIC will lead the researcher to the true model when the sample size is

large? The answer is a big ‘IT DEPENDS’. If the true model lies within the pre-specified

family of model the answer is yes. However, if the true model does not lie within the pre-

specified family of models the answer is no (see next section). Even worse, in the latter case,

the researcher would have no way of assessing how off the proposed model is from the true

model.

4 Empirical Exercise

To illustrate the danger of utilizing R̄2 and BIC criteria in model selection, we created two

series, yt and xt, that seem to have a ‘strong’ relation.
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Our base model is yt = β0 + β1xt + ut. Ordinary Least Squares estimation produces the

following results,

V ariable Coefficient Std.Error t− Statistic Prob.

b0 20.5874 1.8512 11.1207 0.0000

b1 0.8186 0.0228 35.8330 0.0000

R̄2 0.8657 BICk 7.5382

Then, we proceeded to increase the number of variables by sequentially adding lags in both,

xt and yt, until the selected criterion indicated the ‘best’ model. Using the R̄2 criterion, the

selected model is yt = d + a1yt−1 + . . . + a5yt−5 + b0xt + b1xt−1 + . . . + b6xt−6 + ut, with an

R̄2 = 0.9642; an improvement with respect to the base model of 11 percent in the fit. The

BIC tells a different story. The best-fit model is yt = d + a1yt−1 + b0xtb1xt−1 + b2xt−2 + ut,

producing a BIC of 6.6262, the lowest possible amongst the class.

Clearly, both criteria would produce an answer with respect to what model would produce

the best fit while taking into consideration the number of variables. The endless look for

parsimony. The problem is that neither approach looks into the statistical adequacy of the

models. This creates the problem of sacrificing statistical significance for explanatory power.

In fact, the true model is neither of the previous two but,

yt = d + a · yt−2 + b · t + et

where no statistical relationship between xt and yt exists (see Appendix).
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5 Conclusion

Although both, the R̄2 and the BIC would lead the researcher to deciding what model

represents the best fit to the data, neither of them warrants the existence of a statistically

meaningful model. By construction, they are unable to provide control over the level of

significance in their model selection procedure, unlike a Neyman-Pearson testing framework.

Goodness of fit should be considered a highly unreliable measure in model selection and used

only in conjunction with relevant F-tests.
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6 Appendix

Failure to correctly capture the effect of trends in the expected value of the marginal distri-

butions of xt and yt is the source of nonsense correlations between them. As we know, the

maximum likelihood estimator for b1 in a bivariate linear regression model is b1 =
Cov(x, y)

V ar(x)
.

By definition, Cov(y, x) =
1

n
Σxiyi − E(x)E(y). If E(x) = a + bTi and E(y) = c + dTi, then,

Cov(y, x) =
1

n
Σxiyi − (a + bTi)(c + dTi). Notice that Cov(x, y) = 0 if b =

Σxiyi

ncTi + dT 2
i

− a

Ti

.

This is precisely how we created the series (yt, xt). Ignoring the heterogeneity in both means,

that is, letting b = d = 0, produces b1 =
Σ(yi − c)(xi − a)

Σ(xi − a)2
6= 0. Thus, creating the impres-

sion of a statistical relation between xt and yt.
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