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Do Global CO, Emissions from Fuel Consumption
Exhibit Long Memory? A Fractional Integration Analysis

1. Introduction

Growing concerns about CO; emissions and climate change have focused the attention
of academics and policy makers all over the world on just how effective energy and
environmental policies are. In this setting, understanding the persistence in CO,
emissions is a matter of immediate policy relevance. At the core of the renewed policy
focus is the idea that public policy for a green economy should extend well beyond the
usual “getting prices right” recommendation, in order to nudge both consumption and
production patterns towards a more sustainable path of CO, emissions [see, for
example, EC (2013, 20144, 2014b), Parry et al (2014), Tietenberg and Lewis (2014), IMF
(2014), OECD (2015), and USEIA (2014)].

Measuring the persistence of CO, emissions is crucial for the design, implementation,
and effectiveness of both energy and environmental policies aimed at lowering the
economy’s addiction to carbon. If CO, emissions are in fact stationary, then transitory
public policies (i.e., those that promote energy efficiency, fuel switching or lower
emissions from transportation) will tend to have only transitory effects. Permanent
changes, therefore, require a more permanent policy stance. On the other hand, if CO,
emissions are non-stationary, then even transitory policies will have permanent effects

on emissions and a steady policy stance is less critical.

The literature on the degree of persistence in CO, emissions has mostly concentrated
on testing for the presence of unit roots, which in turn is motivated by the focus on
identifying the long-term relationship between CO, emissions and the use of energy or
even GDP [see, among others, Galeotti et al. (2006), Richmond and Kaufman (2006),
Akbostanci et al. (2009), Aslanidis (2009), Fodha and Zaghdoud (2010), Jaunky (2011),
and Magazzino (2014)]. The main result of these studies is that carbon emissions and
GDP, energy use or income are non-stationary — i.e., integrated of order one —

although not always co-integrated. Traditional autoregressive univariate unit root



tests, however, are limited to the stationary/non-stationary dichotomy. The unit root
tests only provide evidence on the existence or absence of a permanent component,
but not on how big it is. That is, the unit root test only confirms that the current value
of a variable is determined by its past behavior, and is unable to identify how far back

in time that influence extends.

There is now an extensive literature on fractional integration which goes well beyond
the stationary non-stationary dichotomy to consider the possibility that variables may
follow a long memory process [see, for example, Palma (2007)] This long range
dependence is characterized by a hyperbolically-decaying autocovariance function,
and by a spectral density that approaches infinity as the frequency tends to zero. The
intensity of this phenomena can be measured by a differencing parameter “d”, which
includes the stationary case (d = 0) and the non-stationary case (d = 1) as the two
extreme cases. When d < 1 the process is mean reverting. For 0.5 <d < 1, the
process is not covariance stationary, although it is mean reverting. When —0.5 < d <
0.5 the process is said to be covariance stationary and ergodic with a bounded and
positively valued spectrum at all frequencies. When —0.5 < d < 0, the process has
intermediate memory. In turn, when 0 < d < 0.5, the process is stationary, but
displays long memory in the sense that its autocorrelation function decays
exponentially, rather than geometrically as in the case of short memory (d = 0). Long
memory implies a significant dependence between observations widely separated in
time, and therefore the effects caused by shocks tend to decay only slowly, although

they still are mean-reverting in nature.

While this more flexible approach has been widely adopted in the macroeconomics
literature, only more recently has the presence of long-range dependence also been
tested in the literature on energy [see, for example, Elder and Serletis (2008), Lean and
Smyth (2009), Gil-Alana et al. (2010), Apergis and Tsoumas (2011, 2012), and Barros et
al. (2012a, 2012b)]. The results from these fractional integration tests generally
suggest that the energy variables considered — production, final demand, prices — all

exhibit long-term memory.



More directly relevant from our standpoint, there is now a budding literature
considering the possibility that CO, emissions released to the atmosphere may follow a
long memory process [see, for example, Barassi et al. (2011), Liu and Chen (2013) and
Gil-Alana et al. (2015)]. The evidence so far is that in many cases the existence of unit
roots cannot be rejected, and, in other cases, emissions are non-stationary, but mean
reverting. Overall, the evidence seems to go in the direction of very long memory. In
no case have global CO, emissions or their different sources been considered in the

literature.

In this article we contribute to the literature on the long-memory properties of global
CO, emissions by measuring their degree of fractional integration. We use data on
worldwide CO;, emissions from the onset of the Industrial Revolution, i.e., from 1750
onwards. We consider not only the degree of persistence in aggregate CO, emissions
but also each of its main sources — solid fuels, liquid fuels, gas fuels, cement

production, and gas flaring.

We test for fractional integration using an ARFIMA model. An ARFIMA model is a
generalization of the ARIMA model which frees it from the I(0)/I(1) dichotomy,
therefore allowing for the estimation of the degree of integration of the data
generating process. In an ARMA process the AR coefficients alone are important to
assess whether or not the series is stationary. In the case of the ARFIMA model, the AR
and MA terms are treated as part of the model selection criteria. Accordingly, the
ARFIMA approach provides a more comprehensive and yet more parsimonious

parameterization of long memory processes than the ARMA models.

The remainder of this article is organized as follows. Section 2 presents the data set.
Section 3 provides a brief technical description of the methodology used, and Section 4
discusses the empirical findings. Finally, Section 5 provides a summary of the results,

and discusses their energy and environmental policy implications.

2. Data: sources and description

In this paper we use annual data for the world’s overall CO, emissions from fossil-fuel

consumption covering 1751 to 2013. Data were obtained from the Carbon Dioxide



Information Analysis Centre [see Boden et al. (2013)]. Aggregate CO, emissions are
defined as a sum of five global CO, emissions components: CO, emissions from burning
fossil fuels (solid, liquid, gas and gas flaring) and from cement production. The data do
not consider emissions from land use, nor a change in the use of land, or forestry, or
emissions from international shipping or bunker fuels. All variables are measured in
million metric tonnes of carbon per year (Mt, hereafter), and were converted into units
of carbon dioxide (CO,) by multiplying the original data by 3.667, the ratio of the two
atomic weights. See Joint Research Centre of the European Commission (2014) for a

detailed comparison among different available measurements of CO, emissions.

The first column of Table 1 shows the mean value of the world total CO, emissions for
each of the twenty six decades of the sample, while the remaining columns show the
shares of emissions from fossil fuel combustion (coal, oil, gas and gas flaring) and

cement production.

Before the Industrial Era, i.e., before 1750, CO, emissions were mostly stable over
time, and caused by the release of carbon into the atmosphere from deforestation and
land-use activities [Ciais et al. (2013)]. Over the past two and a half centuries, however,
the world’s total CO, emissions have increased dramatically, rising from just 11 Mt in
1751 to a staggering 36,131 Mt in 2013. The average rate of growth for the whole-
period sample was 3.08% per year. For the more recent period from 2000 to 2013, the

annual growth rate was slightly lower, at 2.7%.

This aggregate increase in CO, emissions hides a variety of important trends
throughout the sample period. During the period of the first industrial revolution, i.e.,
between 1750 and the 1830s, total CO, emissions remained stable, with levels ranging
from 11 Mt in 1751 to nearly 96 Mt towards the end of the 1830s. The period of the
second industrial revolution, i.e., from 1870 to 1900, brought with it two greatly
influential inventions — electricity and the internal combustion engine. These
inventions, along with the outburst of innovation they induced, triggered a widespread
use of fossil fuels, either as source of energy or as a raw material in the production of
plastics, detergents, paints or asphalts. Accordingly, CO, emissions have since grown

exponentially to the present day.



During the period of the two industrial revolutions, coal became the ubiquitous source
of CO, emissions, accounting for 100% of total CO, emissions until the early 1860s, and
remained a dominant source of emissions until the present times. For the sample
period, coal accounted for 83.86% of CO, emissions. When considering only the period
following World War Il, coal accounted for 42.95% of all CO, emissions. Having reached

a trough in 1974 representing 34.16% of all emissions, it rose again to 42.98% in 2013.

CO, emissions from oil combustion started in the 1860s, and after 1920 became a
significant source of energy. It represents 11.56% of the worlds’ aggregate CO,
emissions for the entire sample period, but has increased at a consistent pace. If we
consider only the period following World War I, oil combustion has represented an
average of 39.48% of all emissions. In 2013, the CO, emissions from liquid fuel

consumption accounted for 37.73% of total emissions.

Gas fuel consumption includes both liquefied petroleum gas and more recently,
natural gas. It is responsible for 3.63% of aggregate CO, emissions for the entire
sample period. It became a much more significant source of emissions after the 1950s,
a period during which it accounted for 13.80% of all emissions. It reached a peak in
1999 with 19.21%, but after that date it has remained relatively stable. In 2013 it

accounted for 18.56% of emissions.

Finally, CO, emissions from cement production and gas flaring are more residual. They
account for a combined amount of around 0.95% of total emissions for the whole
sample period. If we consider only the period after World War Il, emissions from
cement production and gas flaring account for an average of 2.48% and 1.28%, of total

emissions, respectively.

3. Fractional Integration
3.1 Fractionally-integrated processes

A fractionally-integrated process is a stochastic process with a degree of integration
that is a fractional number, and with an autocorrelation function that exhibits
persistence, albeit neither as an 1(0) nor an I(1) process. Nevertheless, its persistence is
consistent with a stationary process, where the autocorrelations decay hyperbolically.
Because the autocorrelations die out slowly, the fractionally-integrated processes
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display long-run rather than short-term dependence, and for that reason are also

known as long-memory processes [See, for example, Palma (2007)].

A time series x; = y; — z; — where [ is the vector of coefficients, z; represents all
deterministic factors of the process, y;, and t = 1,2,...n — is said to be fractionally

integrated of order d if it can be represented by
(1 - L)dxt = ut, t = 1, 2, 3, e (1)

where, L is the lag operator, d is a real number that captures the long-run effect, and

u, is 1(0).

Through binomial expansion, the (1 — L) filter provides an infinite-order L polynomial

with slowly and monotonically declining weights,

- - d(d—1 d(d —1)(d -2
(1—L)d=z<4> -1/ =1-dL+ ( T )LZ— ( 3)'( )L3+--- (2)
j=0 g ' '
and thus (1) can be rewritten as:
d(d-1) d(d—-1)(d - 2)
Xt = dxt_l - Txt_z + 3' xt_g + "'ut. (3)

If d is an integer, then x; is a function of a finite number of past observations. In
particular, if d = 1, then x; is a unit root non-stationary process and, therefore, the
effect of a random shock is exactly permanent. If d = 0, then x; = u; and the time
series is [(0) and weakly auto-correlated (or dependent) with autocovariances that

decay exponentially. More formally,
Y = a, for j=1,2,... and |ay| < 1. ()

Letting d to be a real number provides a richer degree of flexibility in the specification
of the dynamic nature of the series, and depending on the value of d we can
determine different levels of intertemporal dependency. In fact, when d is a non-
integer number, each x; depends on its past values way back in time. Moreover, the

auto-covariance function satisfies the following property



Y = cj%4t, for j=1,2,.. and 0<|¢;| < (5)

where = means that the ratio between the two sides of (5) will tend to unity as j — oo.
Assuming that the process x; has a spectral distribution such that the density function

f(A) is given by

2

[2(1 — cos(A)] 24 (6)

9 (e?)

0.2
f) = <§> $ (e ™)

then, for low frequencies, as 1 — 07, we obtain

fD) =~ cA72d (7)

2 0 2
where, ¢, = (Z—n) |¢ ((3| > 0 and = means that the ratio between the two sides of

(7) will tend to unityas A - 0%,

In general, the larger the value for the fractional-difference parameter d, the greater

the degree of persistence. Specifically, we have several cases.

If —0.5 < d < 0, then the autocorrelation function decays at a slower hyperbolic rate
but the process is called anti-persistent or, alternatively, is said to have a rebounding
behavior or negative correlation, because the autocorrelations for lags greater than

zero are negative.

If 0 < d < 0.5, the process x; reverts to its mean, but the auto-covariance function
decreases very slowly and hyperbolically as a result of the strong dependence on past
values. The spectral density function is unbounded at the origin and x; is said to
exhibit long-memory behavior. This means that the effects of a random shock in the
innovations of the series are transitory and the series will eventually revert to its
mean. Nevertheless, the effects will last longer than in the purely stationary case

(d = 0).

If 0.5 <d <1, the process becomes more non-stationary in the sense that the
variance of the partial sums (5) increases, but the series retains its mean-reverting

property.



Finally, if d > 1, the process is non-stationary and non-mean-reverting, i.e. the effects

of random shocks are permanent.

3.2  ARFIMA processes

An auto-regressive fractionally integrated moving average process, ARFIMA, is an
extension of the traditional ARIMA model by allowing for fractional degrees of
integration. The autocorrelations of the ARFIMA process decay at a slower rate than
the exponential rate associated with the ARMA process and, generally, with short
memory processes. ARFIMA models were first introduced to solve problems with unit
roots tests caused by either variable aggregation or by the duration of shocks [see,

again, Palma (2007)].

A process like (1) is called fractionally integrated of order d if d is a non-integer. If, in

addition, u; in (1) isan ARMA(p, q), then x; is an ARFIMA process becomes
dLP)(A = L) *x, = 6(L)e, (8)

where ¢ (LP) and 6(L?) are the polynomials of order p and q respectivelly, with all

zeroes of ¢(LP) and 6(L?) given, respectively, by

$(2) =1— 1z~ 2> — .. — ¢ppzP =0 (9)

0(z) =1+0,z+6,z>+ .. +60,27=0 (10)

lying outside the unit circle, and e; is white noise. Clearly, the process is stationary and

invertible for —0.5 < d < 0.5.

The estimation of the parameters of the ARFIMA model is done using maximum

likelihood. The log Gaussian likelihood was established by Sowell (1992) and is

1 - T —~
{’((ylﬁ)) = _E{T log(2m) + log|V| + (y — Xﬁ) y1 (y — Xﬁ)} (11)

The covariance matrix V has a Toeplitz structure:



Yo V1 Y2 o ¥Yr-1

V1 Yo V1 - ¥Yr-2
V=|7 V1 Yo - VYr-3 (12)
|—VT—1 Yr—2 Yr-3 -~ Yo J

where, yo = Var(y,) and y; = Cov(y;,y,—q) forj= 1,2,..t —1land t =1,2,.. T.

4, The Empirical Results
4.1 Standard Unit Roots Tests

As a point of reference, we begin by considering the results from the standard unit
roots tests, i.e., the tests that only consider the dichotomy between stationarity and
non-stationarity. The results are traditionally interpreted as suggesting that the effects
of one-time shocks to the series are either transitory, if the series is stationary, or
permanent if the series is not stationary. We use the Augmented Dickey-Fuller (ADF) t-
test to test the null hypothesis of a unit root in aggregate CO, emissions and its
components in log differences. We used the Schwartz Bayesian Information Criterion

(BIC) as the model selection criteria.

Our results are presented in Table 2 and suggest that all series under consideration are
non-stationary but stationary in first differences, that is, they are I(1). Based on these
test results we can conclude that one-time shocks to all of these series have
permanent effects. This means that the one-off policy shocks have permanent effects
and that maintaining a steady policy stance is not critical, since even one-time shocks
will lead to permanent effects. In addition, there is nothing we can say based on these
results on the relative degree of persistence of the different components of the global

CO, emissions.

It is also interesting to note that these results coincide with the directly-related
literature on stationarity/non-stationarity in CO, emissions to confirm the presence of
unit roots. Furthermore, even the little evidence using a fractional integration
approach suggests that unit roots are prevalent. In Barassi et al. (2011), CO, emissions
in five of the 18 OECD countries considered — Australia Canada, Denmark, UK and US —
display unit roots. In turn, in Gil-Alana et al. (2015), CO, emissions in two of the four

major emitting economies — China and India — display unit roots.
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4.2 Fractional integration — 1750-2013

In this section and the next one, we present the main estimation results of the
different ARFIMA(p,d, q) models using natural logarithms of the raw data. In all
cases, we present the estimation results of the auto-regressive and moving average
components, if present, as well as of the estimated fractional integration parameter d.
We used the Schwartz Bayesian Information Criterion (BIC) as the model selection
criteria. For each estimated parameter we present the corresponding standard errors,

p-values and 95% confidence intervals.

Estimation results for the whole sample period from 1750 to 2013 are presented in
Table 3. Empirical results suggest that there is statistically-significant evidence for the
non-rejection of the presence of long memory for both aggregate CO, emissions as

well as its five different components.

Examining the results in more detail, we find that all the estimates of the fractional
parameter d are between 0 and 1, thus allowing us to reject both the case of pure
stationarity (d = 0) and the unit root model (d = 1). More specifically, all estimated
parameters d are statistically significant at the 1% level, and lie within the interval (0,
0.5). Total emissions have a degree of persistence of d = 0.354, and emission from gas
and gas flares show the highest degrees of persistence (d = 0.467 and d = 0.438),
while emissions from coal show the least persistence (d = 0.271). In turn, emissions
from oil and cement have degrees of persistence close to the aggregate (d = 0.303

and d = 0.368, respectively).

Overall, these results mean that the different series are better characterized as being
stationary, but with long memory. The effects of a one-time random shock in the
innovations of these series are transitory, as the series are mean reverting. A steady
policy stance is thus necessary to yield a permanent impact. The effects of the one-
time random shocks, however, will last longer than in the purely stationary case. These
series exhibit long-memory behavior. Accordingly, a permanent policy stance will tend

have cumulative effects over time.

The confidence intervals for the estimated fractional integration parameters are

relatively narrow and always in the positive range. Also, for aggregate emissions as
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well as emissions from coal and oil the upper bounds are lower than 0.5, thus
reinforcing the idea that emissions are stationary and mean-reverting, but exhibiting
long term memory. For emissions from gas, cement, and gas flaring, however, the
upper bounds are greater than 0.5, leaving open the possibility that these series may

be non-stationary, though mean-reverting.

These results pointing to stationarity, but with long memory, are very much in line
with recent evidence on the levels of persistence in energy demand and production
[see, for example, Lean and Smyth (2009), Gil-Alana, et al. (2010), Apergis and
Tsoumas (2011, 2012), and Barros et al. (2012a)]. This is relevant as CO, emissions bear

a direct technical relationship with energy consumption.

More importantly, however, our results are different in important ways from the
evidence in the literature on CO, emissions. Our results of stationarity with long
memory coincide with the evidence in Barassi et al. (2011) for the period 1870-2004
for only four of the 18 OECD countries studied — Finland, Germany, Netherlands, and
Norway. For three other countries — Belgium, France, and Sweden - CO, emissions are
found to be non-stationary, but mean reverting, the same being likely true for six other
countries — Australia, Italy, Japan, Portugal, Spain, and Switzerland. Furthermore, Gil-
Alana et al. (2015) present evidence for 1751-2012 for non-stationarity with mean
reversion for UK and US. It is worth recalling that in the remaining cases in both papers
the authors identify unit roots. Accordingly, we find that, at the global level, both
aggregate CO, emissions and CO, emissions from different sources show much shorter

long-memory patterns than in these contributions to the literature.
4.3 Fractional integration — 1950-2013

We now re-consider the empirical evidence considering a much smaller sample, 1950-
2013. Indeed, we saw that after World War |l there were important changes in the
evolution of CO, emissions — emissions from oil are now very significant, and emissions
from gas have established themselves as an important source of emissions.
Furthermore, and from a more intuitive perspective, this period may reflect more
accurately the current persistence patterns in CO, emissions. Besides, we want to
ascertain whether or not some of the differences vis-a-vis the literature may be

sensitive to the sample being considered. Naturally, for some of the components of
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global emissions, i.e., cement and gas flaring, given the actual sample sizes, the results
are either close to or very similar to the results found before. Estimation results for the

period 1950-2013 are presented in Table 3.

Again, all of the estimates of the fractional parameter d are in the range (0, 1), thus
allowing us to reject both the pure stationary case (d = 0) and the unit root model
(d = 1). Again, all series exhibit long-term memory as all estimated parameters d are
statistically significant at 1% and lie within the interval (0, 0.5). Total emissions for this
restricted period have a degree of persistence of d = 0.391, close to the 0.354 for the
whole period. Emission from gas and gas flares show the highest degrees of
persistence (d = 0.464 and d = 0.438). In turn, emissions from oil and cement have
degrees of persistence close to the aggregate (d = 0.303 and d = 0.368). For all of

these the results are rather close to the results with the whole sample.

The most important difference refers to the level of persistence for coal, which is now
substantially larger than for the longer sample period (d = 0.449 versus d = 0.271).
This is quite understandable, since this was a time when emissions from coal became

much less relevant in relative terms than before.

Finally, and as before, the confidence intervals for the estimated fractional integration
parameters are relatively narrow and always in the positive range. Not surprisingly,
however, with a much shorter sample period, the precision of our estimates is
somewhat reduced, and the confidence intervals we obtain for our estimates are
clearly wider than when the whole data set is considered. Now, only for emissions
induced by oil combustion is the upper bound lower than 0.5. For aggregate emissions,
as well as for emissions from coal, gas, cement, and gas flaring, the upper bounds are
greater than 0.5, leaving open the possibility that these series may be non-stationary,
though mean-reverting. In general this suggests an even longer memory than when

the whole sample is considered.
4.4 Impulse response function analysis

We now consider the impulse response function analysis associated with the estimates
for the whole period, 1750-2013. We focus on the duration and size of transitory

shocks, ultimately determining what long-memory means in practical terms. Using the
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whole structure of the estimated ARFIMA stochastic process provides a more
informative view than just considering the fractional integration parameters alone.
(Results for the shorter period, 1950-2013, are not substantially different, and are
available upon request.) The accumulated impulse response functions and their 95%
upper and lower limits (the dashed lines) for a century are presented in Figures 1

through 6.

Considering first the impulse response function at the aggregate level, we find that a
one-time shock of 1 Mt in CO, emissions in 2014 accumulates into a total increase in
emissions over time of 6.38 Mt through the feedback mechanisms of the stochastic
process. Of this total, 50% accrues within the first 11 years, and 75% within the first 29
years. The bulk of these effects appear within a 68 year period. So we observe that
although the pattern of the effects is front loaded, progressively decreasing marginal
effects persist for quite a while, giving a good sense of what long memory means in

practical terms.

The same pattern of fast appearing effects followed by a slow marginal decay of the
effects appears with the three fossil fuel sources of CO, emissions. Specifically, a one-
time shock of 1 Mt in emissions from solid, liquid and gas fossil fuels translates into a
long-term increase in accumulated emissions of 4.83 Mt, 2.96 Mt, and 5.80 Mt
respectively. Convergence is faster for emissions from solid and liquid fossil fuels as
50% appear within 8 and 3 years, respectively, while 95% are observed within 49 and
36 years respectively. The opposite is true with respect to emissions from gas. The
long-term effect is 5.80Mt. Of this effect, it takes 15 years to reach half of this effect

and 75 years to reach 95%.

The patterns of response to 1 Mt one-time shocks in CO, emissions from cement and
gas flaring are different. They accumulate up to a certain point, but then the process
reverses, so that the accumulated effects peak early in the time horizon. The total
accumulated effects of shocks to emissions in cement reach 8.23 Mt, and peak by year
46 at 14.10 Mt. In turn, the accumulated effects of a shock in CO, emissions from gas
flaring is 0.38 Mt, and peak after 8 years at 1.28Mt, followed by a long period of a

rather slow decline in emissions. We still see a strong pattern of rather long memory.
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5. Conclusions and Policy Implications

This article tests for the presence of long memory in the world’s CO, emissions from
fuel-fossil combustion, including cement production. Our findings suggest that the
presence of long memory in the world total CO, emissions cannot be rejected, both for
aggregate CO, emissions and for each of its five components — coal, petroleum, gas,

cement, and gas flaring.

Specifically, all of the estimated fractional-integration parameters are positive and
smaller than 0.5. Therefore, we reject both the purely stationary case (d = 0) as well
as the unit root case (d = 1). All variables are stationary and mean reverting, but with
autocorrelations decaying at a hyperbolic rate. In some cases, the upper limit of the
confidence intervals for the fractional-difference parameter d is greater than 0.5,
suggesting that the series might be non-stationary, but still mean reverting. At any
rate, the effects of a given random shock will be transitory, but reverting back to their
trend at a slower rate than in the purely-stationary case (d = 0). Accordingly, we find
strong evidence of a significant dependence between CO, emissions widely separated

in time, i.e., CO, emissions exhibit long-term memory.

Using our estimate of the fractional integration parameter for aggregate CO, emissions
as a reference point, our results suggest that the emissions from coal and oil
combustion exhibit the weakest degree of long range dependence, while emissions
from coal, gas, and gas flaring have the strongest levels of persistence. The degree of

persistence for emissions from cement production is around average.

We further probe the characteristics of the different series in their response to
transitory shocks by considering the accumulated impulse response functions. We
show that for both aggregate CO, emissions and emissions from fossil fuel combustion,
there is a strong pattern of front loading with half of the effects appearing with 8, 3,
and 15 years, for solid, liquid and gas fossil fuels respectively. The bulk of the

accumulated effects, however, takes 49, 36, and 75 years to appear, respectively.

Our findings on the long memory nature of CO, emissions have important implications
for both the design and the effectiveness of energy and environmental policies. When

CO, emissions are a purely-stationary process, that is, when they are a short memory
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process, then, in the wake of a policy shock, these emissions will tend to move away
from and revert to their trend more quickly than in presence of long memory, that is,
they will exhibit a strong dependence on past values. Given the existence of long
memory, positive policy shocks (for instance, in the form of improving energy
efficiency programs, subsidies for alternative energy sources, or CO, mitigation policies

among others) are likely to be more effective as they are long lasting.

Despite the fact that the effects of any active policy on CO, emissions tend to
disappear only slowly, they preserve their temporary nature. Accordingly, permanent
effects on CO, emissions will require a more permanent policy stance. In this context,
it is important to mention that, if one were to only rely on testing for the dichotomy
between stationarity and non-stationarity, one would likely conclude in favor of non-
stationarity and, therefore, even transitory policy shocks would seem to have
permanent effects. Our fractional integration analysis highlights that this is not the

case. The effects of transitory shocks are temporary, although long lasting.

These results also have important implications from a more technical perspective. In
particular, they suggest the importance of accounting for the interactions of CO,
emissions with energy, the economy, and climate both in terms of modeling and
forecasting, as there is evidence that transitory shocks in CO, emissions exhibit long
memory. Indeed, given the strong connection of the energy and transport sectors to
the rest of the economy, the effect of energy policies may be transmitted to other
sectors and even have impacts on the real economy, such as employment and output,

feeding back CO, emissions.

Finally, it should be mentioned that the patterns of long memory we identified at the
global level are nevertheless shorter than are usually thought [see Barassi (2011) and
Gil-Alana et al. (2015)]. Our pattern of stationarity with long memory seems to be the
exception in the literature and not the rule. In this sense, our argument for more
permanent environmental policies is even more critical. This consideration also leads
to an important avenue for further investigation. Indeed, it would be important to
consider the issue of long-term memory at the national level for a large number of

countries and CO, emission sources. This would allow us to identify the countries and
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in each country the national emissions sources, for which CO, emissions patterns are

more persistent and for which, therefore, policies will likely be more effective.
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Table 1 — World total CO, emissions from fossil fuel consumption and cement production

Shares (%)
Decades Total CO2 (Mt)
annual average
Solid Fuels Liquid Fuels Gas Fuels Cement Gas Flaring
1750 - 1759 10.992 100.00 - - - -
1760 - 1769 10.992 100.00 - - - -
1770 - 1779 14.290 100.00 - - - -
1780 - 1789 17.954 100.00 - - - -
1790 - 1799 22.717 100.00 - - - -
1800 - 1809 34.075 100.00 - - - -
1810 - 1819 44.334 100.00 - - - -
1820 - 1829 59.723 100.00 - . . .
1830 - 1839 95.997 100.00 - - - -
1840 - 1849 149.491 100.00 - . - .
1850 - 1859 248.419 100.00 - - - -
1860 - 1869 420.261 99.74 0.26 - - -
1870 - 1879 664.283 99.34 0.77 - - -
1880 - 1889 1,021.890 98.03 1.54 0.50 - -
1890 - 1899 1,499.309 96.80 2.64 0.54 - -
1900 - 1909 2,411.645 95.81 3.52 0.68 - -
1910- 1919 3,210.763 93.85 5.15 1.00 - -
1920 - 1929 3,569.835 86.25 11.81 1.74 0.21 -
1930 - 1939 3,812.758 79.01 17.10 2.95 0.92 -
1940 - 1949 4,919.653 73.91 20.97 4.30 0.82 -
1950 - 1959 7,390.654 59.82 29.91 7.40 1.40 1.47
1960 - 1969 11,292.448 46.27 39.30 10.76 1.87 1.81
1970 - 1979 17,153.382 35.63 47.23 12.93 2.10 2.12
1980 - 1989 20,083.850 39.63 41.85 15.09 2.43 1.01
1990 - 1999 23,368.992 37.51 40.87 18.08 2.95 0.58
2000 - 2013 30,520.275 38.89 37.73 18.56 4.11 0.71
Sample Averages
1750-2013 83.86 11.56 3.65 0.65 0.30
1950-2013 42.96 39.48 13.80 2.48 1.28
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Table 2 — Traditional unit root results for emissions in log differences

Sample period:

1750-2013 Period DET Lags t p p-value BIC
Total emissions 1751-2013 None 6 2.495 0.748 0.012 ** -680.409
Solid fuels 1751-2013 none 6 -2.836 0.689 0.004  *** -675.459
Liquid fuels 1870-2013  Constant 1 -6.867 0.162 0.000 *** -298.468
Gas fuels 1885-2013 Constant 0 -11.098 0.132 0.000 *** -293.336
cement 1928-2013 Constant 0 -5.939 0.400 0.000 *** -177.32
Gas flaring 1950-2013 None 2 -2.538 0.541 0.011 ** -94.8235

Sample period:

1950-2013
Total emissions Constant 0 -5.217 0.380 0.000 *** -246.454
Solid fuels Constant 0 -5.536 0.334 0.000 *** -244.054
Liquid fuels Constant and trend 0 -6.016 0.257 0.000 *** -216.858
Gas fuels Constant and trend 0 -7.942 0.075 0.000 *** -250.19
Cement Constant and trend 0 -5.028 0.415 0.001 *** -234.431
Gas flaring None 2 -2.538 0.541 0.011 ** -94.8235




Table 3 - Fractional Integration Results — 1750-2013

Variable Sample period Coefficient Estimates Std. Err. p-value Conf. Interval (95%) MBIC
ay O.444 0.110 0.000 [0.228 ; 0.629]
a, 0.552 0.109 0.000 [0.339 ; 0.768]

Total CO2 emissions from fossil fuel consumption 1751 - 2013 0, 0.742 0.082 0.000 [0.582 ; 0.903] 2890.312
0, 0.162 0.020 0.001 [0.065 ; 0.260]
d 0.354 0.046 0.000 [0.263 ; 0.444]
oy 1.103 0.100 0.000 [0.906 ; 1.299]
oy -0.106 0.099 0.285 [-0.299 ; 0.088]

CO2 emissions from solid fuel consumption 1751 - 2013 2721.582
0, 0.370 0.062 0.000 [0.249 ; 0.492]
d 0.271 0.076 0.000 [0.121 ; o0.420]
[+ 0.995 0.006 0.000 [0.984 ; 1.006]

CO2 emissions from liquid fuel consumption 1870 - 2013 1506.227
d 0.303 0.059 0.000 [0.186 ; 0.419]
oy 0.406 0.102 0.000 [0.207 ; o0.605]
oy 0.589 0.101 0.000 [0.390 ; 0.788]

CO2 emissions from gas fuel consumption 1885 - 2013 1084.689
03 0.236 0.098 0.016 [0.044 ; 0.429]
d 0.467 0.036 0.000 [0.395 ; 0.538]

CO2 emissions from cement consumption 21 1122 0.018 0.000 [1.087 ; 1.157]

1928 - 2013 Qg -0.127 0.017 0.000 [-0.160 ; -0.094] 512.337

d 0.368 0.097 0.000 [0.178 ; 0.557]

CO2 emissions from gas flaring consumption oy 0.666 0.143 0.000 [0.385 ; 0.948]

1950 - 2013 a3 0.216 0.114 0.059 [-0.008 ; 0.439] 514.467

d 0.438 0.088 0.000 [0.255 ; 0.609]

Note: @ stands for the estimated value of the parameter associated with x;_, of the AR component and  stands for the estimated value of the stochastic term of order g (e¢—q ) of the MA component.
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Table 4 - Fractional Integration Results — 1950-2013

Variable Sample period Coefficient Estimates Std. Err. p-value Conf. Interval (95%) BIC
oy 1.169 0.179 0.000 [0.818 ; 1.521]

Total CO, emissions from fossil fuel consumption o, -0.175 0.177 0.321 [-0.522 ; 0.171] 741.998
d 0.391 0.109 0.000 [0.1277 ; 0.605]
ay 0.990 0.100 0.000 [0.969 ; 1.011]

CO; emissions from solid fuel consumption 01, -0.155 0.132 0.241 [-0.414 ; 0.104] 894.631
d 0.449 0.058 0.000 [0.336 ; 0.564]
oy 0.992 0.010 0.000 [0.973 ; 1.011]

CO; emissions from liquid fuel consumption 909.411
d 0.303 0.086 0.000 [0.134 ; 0.473]
ay 0.549 0.120 0.000 [0.313 ; 0.785]

CO; emissions from gas fuel consumption s 0.447 0.120 0.000 [0.211 ; 0.682] 774.641
d 0.443 0.057 0.000 [0.331 ; 0.554]

€O, emissions from cement consumption O 0.992 0.008 0.000 [0.977 ; 1.008]
0, 0.312 0.118 0.008 [0.081 ; 0.542] 607.619
d 0.464 0.044 0.000 [0.377 ; 0.551]

CO; emissions from gas flaring consumption ! 0.666 0.0143 0.000 [0.385 ; 0.948]

514.467

(o 5 0.216 0.114 0.059 [-0.008 ; 0439
d 0.438 0.088 0.000 [0.255 ; 0.609]

Note: & stands for the estimated value of the parameter associated with x,_,, of the AR component and  stands for the estimated value of the stochastic term of order g (e¢—q ) of the MA component.
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Figure 1: Cumulative IRF - aggregate CO, emissions

Figure 2: Cumulative IRF - CO, emissions from solid fossil fuels
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Figure 4: Cumulative IRF - CO, emissions from gas fossil fuels

Figure 5: Cumulative IRF - CO, emissions from cement
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